

Topics of limnological research in Mexico

Coordinator
Alfredo Pérez Morales

UNIVERSIDAD DE COLIMA

UNIVERSIDAD DE COLIMA

Dr. Christian Jorge Torres Ortiz Zermeño, Rector

Mtro. Joel Nino Jr., Secretario General

Mtro. Jorge Martínez Durán, Coordinador General de Comunicación Social

Mtro. Adolfo Álvarez González, Director General de Publicaciones

Mtra. Irma Leticia Bermúdez Aceves, Directora Editorial

Topics of limnological research in Mexico

Coordinator
Alfredo Pérez Morales

UNIVERSIDAD DE COLIMA

Topics of Limnological Research in Mexico

© UNIVERSIDAD DE COLIMA, 2025
Avenida Universidad 333
C.P 28040, Colima, Colima, México
Dirección General de Publicaciones
Telephone numbers: 312 316 1081 and 312 316 1000, extension: 35004
Email: publicaciones@ucol.mx
www.ucol.mx

ISBN electrónico: 978-968-9733-13-3
DOI: 10.53897/LI.2025.0032.UCOL
5E.1.1/317000/308/2024 Edición de publicación no periódica

All rights reserved according to law
Published in Mexico

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

You are free to: Share: copy and redistribute the material in any medium or format. Adapt: remix, transform, and build upon the material under the following terms: Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial: You may not use the material for commercial purposes. ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Cover and interior photographs: Juan Franco Rodríguez

Certified Publishing Process with ISO since 2005
Double blind ruling and editing are registered in the PRED Electronic Publishing System

Registration: LI-020-24
Received: September 2024
Dictamination: November 2024
Published: December 2025

*This book is dedicated to
Dr. Singaraju Sri Subrahmanyam Sarma,
in gratitude for all his teachings in the world of limnology.*

Index

Preface	10
Introduction	13
Analysis of the Ionic Quality of the Water in the North Aquifer and Cozumel Island, Quintana Roo, Mexico	16
<i>Gerardo Hernández-Flores, Martha Angélica Gutiérrez-Aguirre, Adrián Cervantes-Martínez.</i>	
Limnological Variations of a Tropical Semi-arid River Dam System, Central México	34
<i>Martín López-Hernández, Fernando González-Farías, María Guadalupe Ramos-Espinosa, Fernando Córdova-Tapia, Alejandro Gómez-Ponce.</i>	
Temporal Characterization of Water Quality of Rivers in Contrasting Zones of Two Watersheds in Veracruz, Mexico	58
<i>José Antolín Aké-Castillo, Miriam Guadalupe Ramos-Escobedo, Eduardo Aranda-Delgado.</i>	
Environmental Problems on Water Resources: A Review at the Basin Level with Emphasis on Tuxpan River in Veracruz, Mexico	77
<i>Blanca Esther Raya-Cruz, José Luis Alanís-Méndez, Carlos Francisco Rodríguez-Gómez, Karla Cirila Garcés-García.</i>	
Prospective Analysis of Major Phytoplankton Groups in Some Freshwater Bodies in Campeche, Southeastern Gulf of Mexico	94
<i>Juan Alfredo Gómez-Figueroa, Carlos Antonio Poot-Delgado, Jaime Rendón-von Osten, Yuri Okolodkov.</i>	

On the Relevance of Monitoring the Thermal Structure, Community Metabolism and Phytoplankton Ecology of Inland Waters of Mexico in the Context of Global Change	112
<i>Patricia Margarita Valdespino-Castillo, Jorge Alberto Ramírez-Zierold, Rocío Jetzabel Alcántara-Hernández, Mariel Barjau-Aguilar, Mario Alberto Neri-Guzmán, Paola Julieta Cortés Cruz, Oscar Alejandro Gerardo-Nieto, Martín Merino-Ibarra.</i>	
Middle-Term Hydrological and Microalgal Study in the Lower Basin of the Tuxpan River, Veracruz, Mexico	132
<i>Carlos Francisco Rodríguez-Gómez, Gabriela Vázquez, José Antolín Aké-Castillo, Angeles Rosseth Cruz-Ramírez.</i>	
Phytoplankton from two Dams in Central Mexico	153
<i>Gloria Garduño-Solórzano, José Manuel González-Fernández, Valeria Naomi Barranco-Vargas, Karla de la Luz-Vázquez, Cristian Alberto Espinosa-Rodríguez.</i>	
Towards Molecular, Genetic, and Optical Monitoring of Potentially Harmful Cyanobacteria Blooms in Mexican Freshwater Bodies	177
<i>Laura Valdés-Santiago, José Luis Castro-Guillén, Jorge Noé García-Chávez, Cynthia Paola Rangel-Chávez, Rosalba Alonso-Rodríguez, Alejandra Sarahí Ramírez-Segovia, Juan Gualberto Colli-Mull, Rafael Vargas-Bernal.</i>	
Free Living Continental Aquatic Ciliates (Alveolata: Ciliophora) from Mexico: An Overview of their Species Richness and Distribution	194
<i>Rosaura Mayén-Estrada, Carlos Alberto Durán-Ramírez, Fernando Olvera-Bautista, Víctor Manuel Romero-Niembro.</i>	
Potential Use of Rotifer and Cladoceran Diapausing Eggs as a Tool for Taxonomical, Ecological, and Evolutionary Studies	216
<i>Gerardo Guerrero-Jiménez, Elaine Aguilar-Nazare, Frida Sabine Álvarez-Solís, José Cristóbal Román-Reyes, Araceli Adabache-Ortiz, Marcelo Silva-Briano, Rocío Natalia Armas-Chávez.</i>	
Zooplankton Community and Trophic State in Lake Chapala	234
<i>Cristian Alberto Espinosa-Rodríguez, Lizbeth Cano-Parra, Omar Alfredo Barrera-Moreno.</i>	

Seasonal and Diel Influence of Environmental Factors on the Parameters of a Zooplankton Community in a Tropical Coastal Lagoon	255
<i>Manuel Castillo-Rivera.</i>	
Utilization of Zooplankton in Environmental Risk Assessment in Mexico	275
<i>Cesar Alejandro Zamora-Barrios, Rosa Martha Moreno-Gutiérrez,</i>	
<i>Uriel Arreguin-Rebolledo, Mario Joshue Espinosa-Hernández,</i>	
<i>Francisco José Torner-Morales.</i>	
Exploring Zooplankton-Macrophytes Interaction Research in Mexico: Bibliometric Analysis	296
<i>Marco Antonio Jiménez-Santos, Michael Anai Figueroa-Sánchez.</i>	
The Freshwater and Brackish Hydrozoans of Mexico: An Overview of their Diversity	315
<i>José María Ahuatzin-Hernández, Lorena Violeta León-Deniz.</i>	
Aquatic Macroinvertebrates Diversity in the Grijalva and Usumacinta Rivers, Mexico	332
<i>Everardo Barba-Macías, Juan Juárez-Flores, Cinthia Trinidad-Ocaña,</i>	
<i>José Francisco Miranda-Vidal.</i>	
Fishing Among Socioecological Challenges: The Case of the Zimapán Dam	361
<i>Brenda Rodríguez-Cortés, Karina E. Ruiz-Venegas, Martín López-Hernández,</i>	
<i>Alejandro Gómez-Ponce, Fernando Córdova-Tapia.</i>	
Conclusions	379
About the authors	381
Acknowledgements	395

Utilization of Zooplankton in Environmental Risk Assessment in Mexico

Cesar Alejandro Zamora-Barrios¹
Rosa Martha Moreno-Gutiérrez²
Uriel Arreguin-Rebolledo³
Mario Joshue Espinosa-Hernández¹
Francisco José Torner-Morales¹

¹ Laboratorio de Procesos de Remoción de Contaminantes en Agua. Laboratorio 16, UIICSE, Universidad Nacional Autónoma de México, Campus Iztacala, Av. de Los Barrios No. 1, C.P. 54090, Los Reyes, Tlalnepantla, Estado de México, México. zamoracesaralejandro@iztacala.unam.mx

² Laboratorio de Zoología Acuática, Edificio UMF, División de Investigación y Posgrado, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México.

³ Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, México

Abstract

This brief review focuses on the use of zooplankton as a key indicator to evaluate environmental risk in the aquatic ecosystems of Mexico. It explores some ecotoxicological studies that assess the impacts of toxic agents on individual and population levels. The role of zooplankton in food webs, susceptibility to environmental changes, and significance as an indicator of both direct and indirect pollution effects are emphasized. The study underscores the crucial role of ecotoxicological tests in preventing environmental damage, guiding decision-making, and managing ecosystems. Special attention is given to the ecotoxicology of rotifers, cladocerans, and copepods, providing insights into cultivation protocols, their relevance in ecotoxicology, and key species used in Mexico. It further explores testing methodologies, advantages, and the range of pollutants assessed. The review also examines the geographical distribution of zooplankton research in Mexico, underlining the necessity to broaden investigations to diverse aquatic systems. Challenges, such as the importance of including native species in toxicity studies and the development of specific protocols for freshwater copepods, are addressed.

Keywords

Ecotoxicology, Acute toxicity, Chronic toxicity, Rotifers, Cladocerans, Copepods.

Introduction

Environmental Risk Assessment

The environmental risk assessment (ERA) is a method that assesses the probability of adverse ecological effects arising from the exposure of organisms and communities to one or more chemical compounds, either currently happening or likely to occur (Di Lorenzo et al., 2023). In Mexico, researchers have incorporated the use of aquatic invertebrates into ERA for several years. The selection of these organisms in these evaluations is based mainly on ecological relevance (validity), reliability (reproducibility), representative test species, and sensitivity, as noted by Breitholtz et al. (2006). ERA is carried out through ecotoxicological studies conducted in both laboratory and field settings. Ecotoxicology is comprised of three disciplines: ecology, toxicology, and chemistry and examines the effects of toxic compounds at different levels of biological organization, including individuals, population, and community levels (Pastorino et al., 2024). Measurable outcomes encompass physiological homeostasis, reproductive behavior, morphological alterations, and mortality (Zimmermann and Sures, 2023). This approach employs sensitive organisms as reliable indicators, connecting compound exposure to organism response. These data enable eco-toxicologists to identify concentrations indicating adverse conditions (OECD, 2011).

Ecotoxicological studies play a crucial role in both preventing environmental damage and understanding the chemical characteristics of the environment. They are indispensable in decision-making processes related to resource protection and ecosystem management (Relyea & Hoverman, 2006). These assessments provide valuable insights into the effects of pollutants on aquatic organisms and ecosystems, thereby influencing the formulation guiding the development of environmental protection guidelines. Additionally, these studies help identify sensitive stress indicators, facilitating in the evaluation of mitigation measures (Montalvo & Luque, 2009).

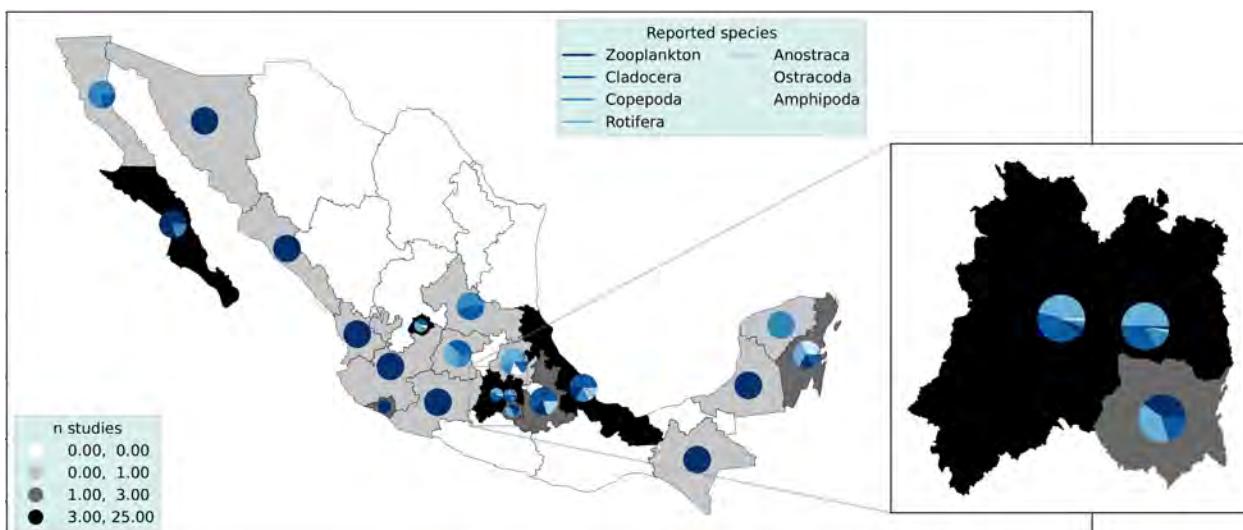
Mexico has a wide variety of aquatic species that can be used in ecotoxicological tests. These tests are essential for conducting a comprehensive Environmental Risk Assessment (ERA), particularly studies focused on evaluating water quality over time and space in waterbodies impacted by pollutants (Santos-Medrano et al., 2007; Guzmán-Colis et al., 2011). In the present review, we emphasize the importance of ecotoxicological studies carried out in Mexico that use native zooplankton species as model organisms. We have compiled various relevant research that addresses the use of rotifers, cladocerans, and copepods in the assessment of environmental risk associated with wastewater treatment plant effluents, heavy metals, pesticides, cyanotoxins, pharmaceuticals, and microplastics, all of which are frequent pollutants in the aquatic environments of Mexico and other regions of the world.

Zooplankton Applications in Ecosystem Health

Zooplankton is vital for aquatic ecosystems, contributing to food webs, nutrient cycling, biogeochemical processes, and algal bloom regulation (Declerck & de Senerpont, 2023). Marine zooplankton, spanning 12 phyla, is diverse, with copepods being the most abundant, constituting 80 % of biomass (Gasca, 2010; Peijnenburg & Goetze, 2013). In freshwater communities, rotifers, cladocerans, and copepods dominate, with rotifers significantly contributing to biomass (Sarma & Nandini, 2017; Elías-Gutiérrez & Ortiz, 2017).

Zooplankton is highly vulnerable to environmental changes, impacting other organisms through trophic interactions (Gutiérrez & Gagneten, 2011). Due to its ease of cultivation and sensitivity, with well-known nutritional requirements and short life cycles, it's an ideal model for ecotoxicological evaluations (Declerck & de Senerpont, 2023). Ecotoxicological tests use rotifers, cladocerans, and copepods as indicators to assess direct and indirect effects (Elías-Gutiérrez & Gagneten, 2011). For example, effluent quality is often assessed based on physical and chemical parameters alone; however, zooplankton have proven useful in assessing the effectiveness of wastewater treatment plants through acute toxicity tests (Torres-Guzmán et al., 2010).

Zooplankton Species Used Globally


Researchers employ zooplankton models tested in controlled conditions or micro/mesocosms (Moreno et al., 2022). Microcosms maintain consistent but less complex conditions, while mesocosms, offering greater complexity, simulate controlled or natural environments indoors or outdoors (Lozano, 2020). Outdoor systems, while authentic, face weather unpredictability, complicating replication and causing data variation. Researchers must align conditions with their study focus and logistical factors, especially in ecotoxicology (Hjorth et al., 2006).

According to De Meester et al. (2023), the majority of zooplankton tests have centered around the *Daphnia* genus due to its well-researched ecology over the past 120 years. Copepod research has focused on risk assessment in both marine and freshwater environments, particularly emphasizing the naupliar stage (López, 2018). *Acartia tonsa* is common in bioassays for evaluating environmental hazards due to its ecological significance and adaptability (Rotolo et al., 2021). Studies indicate that *Tisbe battagliai*, *Tigriopus japonicus*, *Nitocra spinipes*, and *Mesocyclops leuckarti* are more sensitive to various contaminants than *Daphnia magna* (OECD, 2011).

Rotifers are cost-effective tools for environmental protection. The *Brachionus* genus (*B. plicatilis*, *B. calyciflorus*, and *B. havanaensis*) is recognized by the American Public Health Association for assessing xenobiotics, endocrine disruptors, and disinfectants in both freshwater and marine environments (Alayo & Iannaccone, 2002; Sarma et al., 2014).

Zooplankton Groups in Mexico for Environmental Risk Assessment

As of January 2024, in the Scopus database, there are roughly 450 research studies on zooplankton in Mexico, with 80 of them specifically focusing on environmental risk assessment. These studies have highlighted 50 different species of zooplankton with the primary attention given to three main groups: rotifers, cladocerans, and copepods. Other groups, including Anostraca (*Artemia franciscana*), Amphipoda (*Hyalella azteca*), and Ostracoda (*Diaphanocypris meridana*), have also been studied (Fig.1). The majority of research has been conducted in entities such as the State of Mexico, Mexico City, Aguascalientes, Veracruz, Baja California Sur, and Quintana Roo. However, there are still areas, like Oaxaca, Durango, Zacatecas, Colima, and Coahuila, where research is scarce. This emphasizes the need to promote research in these areas to gain a better understanding of the environmental risk in Mexico.

Figure 1. Distribution of Research on Zooplankton in Mexico with a Focus on Environmental Risk and the Main Groups Studied.

Rotifers

Diversity, Behavior, and Reproductive Strategies

Rotifers are microorganisms (approximately 50–2,000 µm in length) ubiquitously found in diverse ecosystems, ranging from fresh and brackish waters to marine environments worldwide. Phylum Rotifera has two classes: Pararotatoria with subclass Seisonidea and Eurotatoria with subclasses Bdelloidea and Monogononta (Fontaneto & Plewka, 2021). Globally, approximately 2,300 species have been described, while in Mexico, around 400 species have been recorded (Sarma et al., 2021). In general terms, the life cycle of mo-

nogonont rotifers begins with the hatching of amictic females from diapause eggs. When environmental conditions are conducive, such as optimal temperature, salinity levels and food availability, reproduction occurs asexually through parthenogenesis.

Conversely, in unfavorable situations, the reproductive process takes a sexual phase. In the sexual phase, mictic females produce diapause eggs stored in the sediments of aquatic systems and can remain viable for many years (Fontaneto & Plewka, 2021). The distinctive ability of rotifers to produce diapause eggs makes them valuable resources for laboratory experiments, including ecotoxicological studies (Won et al., 2017).

Use of Rotifers in Ecotoxicology

Early ecotoxicological studies involving rotifers commenced in the 1980s, as reported by Halbach et al. (1983). Since then, rotifers have been pivotal in evaluating environmental risks linked to a spectrum of emerging contaminants, including pharmaceuticals, pesticides, and microplastics. Additionally, they have contributed significantly to assessing heavy metals, emerging pollutants, and the impact of harmful algal blooms. Various reasons support the position of rotifers as model organisms in this ecotoxicology: a) their ease of culture and manipulation in the laboratory; b) a short life cycle (7-20 days), which facilitates short-term analysis of demographic parameters such as average lifespan, life expectancy, reproductive rates, generation time and increase rates; c) parthenogenetic reproduction, which ensures genetic homogeneity and rapid population growth; d) its high sensitivity to changes in water quality; and e) ecological relevance and reliability in reproducibility (Dahms et al., 2011; Rico-Martínez et al., 2017; Won et al., 2017). These characteristics meet the requirements to consider rotifers as representative test species in environmental risk assessments.

Main Rotifer Species in the Ecotoxicology of Mexico

Recently, Sarma et al. (2021) carried out an exhaustive compilation of rotifer species present in freshwater bodies in Mexico. Among the rotifer families analyzed it was observed that the most diverse were Flosculariidae (50 species), Brachionidae (51 species), Leucanidae (68 species), Notommatidae (48 species), and Trichocercidae (31 species). It is relevant to highlight that the most significant diversity of species was found in the state of Mexico, where 323 species were recorded, followed by Michoacán with 164, Veracruz with 155, Aguascalientes with 150, and Yucatan with 129 species reported. In Mexico, various species of rotifers serve as model organisms in ecotoxicological tests. According to the data included in the Scopus database (November 2024), rotifer species used in ecotoxicological studies in Mexico include *Anuraeopsis fissa*, *Asplanchna sieboldii*, *Brachionus calyciflorus*, *B. angularis*, *B. rubens*, *B. havanaensis*, *Lecane hamata*, *L. luna*, *L. quadridentata*, *L. papuana*, *Euchlanis dilatata*, and *Plationus patulus*.

The basic rotifer bioassays include acute toxicity tests, like the 24 h LC₅₀ (lethal concentration for 50 % of the population) and the EC₅₀, indicating the effective concentration inhibiting 50 % of biological responses to contaminants. Chronic toxicity tests assess life table parameters and population growth in organisms exposed to toxicants (Dahms et al., 2011).

In Mexican aquatic ecosystems, *B. calyciflorus* is commonly used in studies on environmental risks. For example, Zamora-Barrios et al. (2017) evaluated the effects of crude extracts of cyanobacteria detected in Lake Nabor Carrillo, which is part of what was once Lake Texcoco (Mexico City), on *B. calyciflorus* isolated from the same waterbody. Thus, demonstrating the impact that cyanobacteria blooms in tropical waters have on key species. The rotifer *B. angularis*, isolated from a pond in the Park of Tezozomoc (Mexico City), has been helpful in evaluating the effects of methyl parathion, a commonly used insecticide in Mexico, to eradicate insect pests (Gama-Flores et al., 2004). This study illustrates the potential risk associated with the presence of pesticides in aquatic systems and their impact on the population dynamics of invertebrates, which contend with constant changes in water quality and food availability. It also underscores the organisms' usefulness in short-term assessments of environmentally relevant pesticides in Mexico, particularly in agricultural areas. In Aguascalientes, Tovar-Aguilar et al. (2019) used the rotifer *L. pa-puana* to evaluate the effects of the pharmaceutical diclofenac, detected in surface and groundwater due to its extensive use in human and veterinary health. This study exhibits the vulnerability of zooplankton to relevant emerging pollutants and stresses the potential for bioaccumulation of xenobiotics, which can induce disturbances in the ecological structure of aquatic environments. Heavy metal pollution in aquatic environments is a growing concern due to high concentrations, persistence, and biomagnification. The first reports of lead biomagnification in predatory rotifers were published by Rubio-Franchini and Rico-Martínez (2008, 2011) at Niagara Dam in Aguascalientes. Their research focused on the species *A. brightwellii* and emphasized the importance of conducting *in situ* studies while confirming the findings through laboratory tests. Similarly, another study highlights the relevance of assessing the toxicity of metals (Al, Fe, and Zn) in the San Pedro River using acute toxicity tests on *L. quadridentata* (Torres-Guzmán et al., 2010). This approach allowed the estimation of each metal's contribution to overall toxicity, identifying zinc as the most toxic metal, underscoring the value of combining field and laboratory analyses for a comprehensive evaluation of metal pollution.

A recent study in Manatí Lagoon, a protected area in Cancún (Quintana Roo), evaluated the risk through zooplankton, including rotifers (Demidof et al., 2022). These key indicators of aquatic health underscore the urgency of addressing pollution in protected environments. This comprehensive approach, involving the evaluation of key organisms such as rotifers, highlights the urgent need for effective strategies to counteract the de-

trimental effects of heavy metal pollution in aquatic environments, especially in protected areas such as Laguna Manatí. The rotifers *P. patulus* and *A. sieboldii*, isolated from Lake Xochimilco (Mexico City), were used to analyze the effects of microplastics and their interaction with heavy metals on the predator-prey dynamics and demographic variables of the rotifers (Hernández-Lucero et al., 2023). This study revealed that mixtures of heavy metals and microplastics can accentuate the vulnerability of key species to pollution. Thus, it highlights the importance of rotifers in the ecological risk assessment of microplastics in Mexico, emphasizing the need to understand the interaction between these contaminants and aquatic fauna to preserve the health of ecosystems.

Challenges

Most ecotoxicological studies with freshwater rotifers focus on the cities of Mexico and Aguascalientes. This is presumed due to the presence of groups of experts on the subject in these states. While there is evidence of ongoing efforts in the states of Veracruz and Yucatan. It's crucial to intensify these efforts and expand research to diverse aquatic systems in Mexico, leveraging the potential of rotifers. These organisms can be tools in developing mitigation strategies and deepening our understanding of the effects of pollution in different aquatic environments in the country. The study of the effects of heavy metals on rotifers is more common than research on other contaminants. It's essential to explore the environmental risks of emerging contaminants of global relevance, such as pharmaceutical waste and microplastics which still require more detailed investigations. Furthermore, it is crucial to consider more realistic scenarios in studies that reflect aquatic systems contaminated by a mixture of substances, an evaluation made possible thanks to the advantages that rotifers offer as model organisms. Surprisingly, in rotifer studies in Mexico, environmental genomics still needs to be fully integrated despite being a tool that could provide a deeper understanding of the toxicity mechanisms of various toxic substances.

Cladocerans

Diversity, Behavior, and Reproductive Strategies

Cladocerans, commonly referred to as “water fleas,” belong to the Phylum Arthropoda and the class Branchiopoda, encompassing four recognized Orders: Anomopoda, Ctenopoda, Haplopoda, and Onychopoda. With a size range of 0.25 to 18 mm, there are nearly 850 described species, including 150 recorded in Mexico (Cervantes-Martínez et al., 2023). They are the connection between the microbial loop, primary producers, and higher-level consumers (Kalinowska, 2015).

Cladocerans employ their thoracic appendages to filter particles, optimizing nutrient consumption for efficient growth and reproduction (Riisgård, 2015; Smirnov, 2017). Most

species exhibit facultative parthenogenesis, where males are associated with seasonality or environmental unpredictability. They produce resting eggs (ephyppia), serving as a genetic reservoir and facilitating passive dispersal (Bernatowicz et al., 2018). However, certain species within the *Daphnia pulex* complex may display obligatory parthenogenesis (Huynh et al., 2023).

Use of Cladocerans in Ecotoxicology

The utilization of cladocerans in bioassays is supported by their easy maintenance in laboratory settings and sensitivity (Terekhova et al., 2018). Since the 1970s, environmental agencies have standardized protocols for evaluating diverse toxicants using cladocerans (Versteeg et al., 1997). Toxicological studies on cladocerans involve acute tests (LC₅₀ determination within 24-48 h) (OECD, 2004; U.S. EPA, 2002) and chronic tests, assessing life history, physiology, and molecular responses over extended periods (>30 % of the life cycle) (Connors et al., 2022). Population growth and life table experiments offer vital insights into their fitness, stress responses, and reactions to chemical compounds (Sibly & Hone, 2002; Wilson et al., 2006; Sarma & Nandini, 2006).

Main Cladocerans Species in the Ecotoxicology of Mexico

In Mexico, 17.6 % of the globally recognized cladoceran species have been identified, with ongoing efforts to expand this number. However, by 2008, only 1 % of watersheds had been thoroughly explored, indicating vast potential for further study (Elías-Gutiérrez et al., 2008a). Additionally, the use of molecular markers has brought to light a large number of cryptic species (Elías-Gutiérrez et al., 2008b).

The first study to use cladocerans as a model assay in Mexico was focused on evaluating the chronic toxicity of wastewater from the paper industry (Martínez-Jerónimo et al., 1993). Since then, there has been an exponential increase in publications exploring the effects of various chemical, physical, and biological compounds, such as heavy metals, pesticides, surfactants, personal care products, pharmaceuticals, hormones, phytotoxins, microplastics, and wastewater. These studies have been conducted across a limited range of species, including *Daphnia magna*, *D. pulex*, *D. laevis*, *D. exilis*, *D. schoedleri*, *D. ambigua*, *Ceriodaphnia dubia*, *Moina macrocopa*, *M. micrura*, *Alona glabra*, *Diaphanosoma birgei*, *Bosmina longirostris*, and *Macrothrix triserialis*. This surge in research highlights the growing recognition of the important role of cladocerans in aquatic ecotoxicology within the Mexican scientific community.

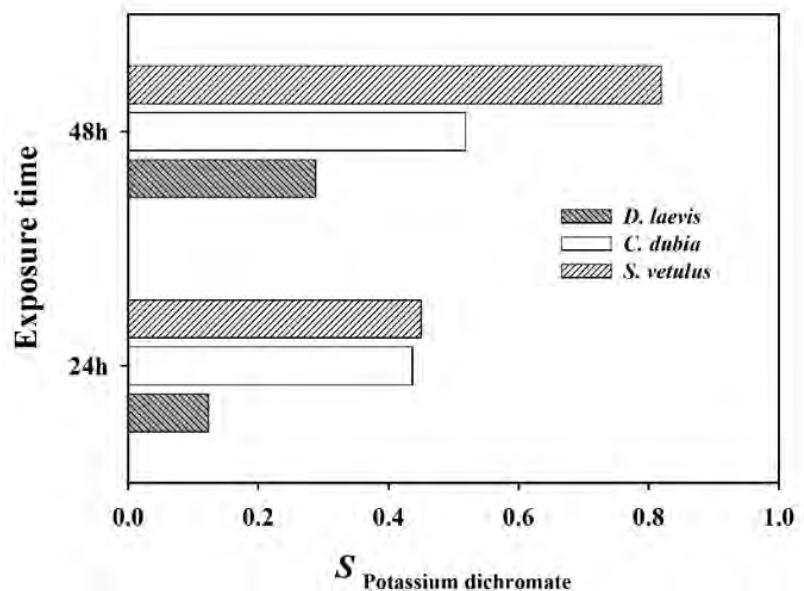
Cladocerans have proven to be a reliable model organism in Mexico's field of environmental assessment. A pioneering study conducted by López-López and Serna-Hernández (1991), linked seasonal zooplankton variation in reservoirs and identified species like *Bosmina longirostris*, *Diaphanosoma birgei*, and *Daphnia parvula* as excellent indicators of

water quality changes associated with eutrophication (Mendoza-Chávez et al., 2022). Recent research in San Luis Potosí revealed a correlation between arsenic levels and microcrustacean diversity in reservoirs, suggesting *Simocephalus punctatus* as a potential reliable bioindicator. Furthermore, saprobity indices have been devised for assessing water quality in the Xochimilco canals (Nandini et al., 2016).

Studies on urban lakes in Mexico City have focused on the impact of different feeding conditions, particularly in the presence of toxin-producing cyanobacteria. Cladocerans, including *Simocephalus mixtus*, *Daphnia mendotae*, *D. pulex*, *Moina micrura*, *M. macrocopa*, and *Ceriodaphnia dubia*, actively consume cyanobacterial cells, leading to alterations in filtration rates and fitness (Pineda-Mendoza et al., 2012; Pérez-Morales et al., 2014, 2020; Nandini et al., 2020) or inducing cyanotoxin production (Pérez-Morales et al., 2015). Additionally, cladocerans have been observed to accumulate heavy metals, cyanotoxins, and microplastics, subsequently transferring them within the food chain (Rubio-Franchini et al., 2016; Zamora-Barrios et al., 2019; Manríquez-Guzmán et al., 2023).

Research with Cladocera strains isolated from Mexican waterbodies examined the impact of Hexavalent Chromium on *Ceriodaphnia dubia*, emphasizing precise short-term assays, including volume, exposure duration, and temperature measurements (Martínez-Jerónimo & Martínez-Jerónimo, 2023). In Aguascalientes, a study revealed high susceptibility of the indigenous species *Alona guttata* to pesticides, even at concentrations similar to guava field applications, causing chronic exposure-related somatic growth alterations. Furthermore, the Holarctic species *Daphnia magna* has been utilized to evaluate the impact of toxic substances such as nonsteroidal anti-inflammatory drugs (NSAIDs) on oxidative stress and genetic material damage (González-González et al., 2014). Additionally, Mexican laboratories participated validating a two-generational reproduction test (Barata et al., 2017). Recent researches are focused on the effects of multiple stressors to assess the synergistic or antagonistic impacts of a wide range of emerging contaminants found in domestic, textile, and hospital wastewater, as well as pesticides. These contaminants include a mixture of detergents, metals such as Zinc, Cadmium, and Arsenic, anti-corrosion agents, cardioactive drugs, antibiotics, NSAIDs, antidepressants, etc. (Hernández-Zamora & Martínez-Jerónimo, 2019; Aguilar-Aguilar et al., 2023; Hernández-Zamora et al., 2023). All the works above highlight the relevance of cladocerans as valuable tools for understanding the response of aquatic ecosystems to factors such as pollutants, changes in feeding, and environmental conditions, providing crucial information for the management and conservation of aquatic resources in Mexico.

Challenges


Mexican legislation designates *Daphnia magna* as a sentinel for toxicity tests (NMX-AA-087-SCFI-2010). However, smaller herbivores such as, *Diaphanosoma*, *Moina*, *Ceriodaphnia*, *Chydorus*, *Alona*, and *Macrothrix* genus, dominate Mexican freshwater ecosystems. These species have shorter lifespans, faster reproduction, lower fecundity, and potentially greater sensitivity than *D. magna*. Martínez-Jerónimo et al. (2008) have proposed to replace *D. magna* with the American cladoceran *Daphnia exilis* in ecotoxicological bioassays due to its taxonomic similarities. Following the same approach, Santos-Medrano and Rico-Martínez (2019) suggest determining the relative sensitivity of native species to *D. magna* using the formula proposed by Von der Ohe and Liess in 2004:

$$S = \log \left(\frac{LC_{50} \text{ of } Daphnia magna}{LC_{50} \text{ of } i} \right)$$

Where: S =relative sensitivity; $LC_{50} \text{ of } Daphnia magna$ = LC_{50} value for *D. magna*, and LC_{50i} =experimental LC_{50} for a species i . A zero value indicates a sensitivity equal to that of *D. magna*, a positive value suggests that *D. magna* is less sensitive, and a negative value indicates that *D. magna* is more sensitive.

In a preliminary experiment designed to assess the impact of Potassium dichromate, *Daphnia magna* exhibited LC_{50} values of 0.93 at 24 h and 0.66 mg L⁻¹ at 48 h. The native species *C. dubia*, *D. laevis*, and *S. vetulus* showed greater sensitivity. *D. laevis* presented an LC_{50} of 0.34 mg L⁻¹ at 48 h, resulting in an S value of 0.28. *S. vetulus* was the most sensitive species, with a $S=0.81$ (Fig.2).

Despite the absence of *D. magna* records in Mexican water bodies, recent studies identify it in Ciénegas del Lerma (Espinoza-Rodríguez, 2023). This underscores the importance of considering native species in ecotoxicological studies for a more realistic scenario and reducing the likelihood of introducing exotic species.

Figure 2. Relative Sensitivity Values of Native Species (*Ceriodaphnia dubia*, *Daphnia laevis*, and *Simocephalus vetulus*) Exposed to the Reference Toxicant (Potassium dichromate) during 24 and 48 h Experiments.

Copepods

Diversity, Behavior, and Reproductive Strategies

In general, most copepods are found in marine or brackish waters (~14,000 registered), with around 3,000 species in freshwater (Uc-Castillo et al., 2022). Copepods in continental waters are classified into three orders: Calanoida, Cyclopoida, and Harpacticoida (Dole-Olivier et al., 2000). Approximately 110 species have been documented in Mexican aquatic ecosystems (Gómez & Morales-Serna, 2014). Copepods typically measure between 1 and 5 mm in length, exhibiting a cylindrical body, segmented exoskeleton, and articulated appendages for swimming and feeding. Copepods display sexual dimorphism, and sexual reproduction is the most common form of reproduction; however, parthenogenesis has been observed in certain harpacticoid species (Poulin, 1996). Most copepods hatch from fertilized eggs, involving the union of a spermatophore, delivered by the male, to the copulatory pore of the female (Reid & Strayer, 1994). Copepod development involves eleven stages, including six naupliar and five copepodite stages with molting occurring between each stage and metamorphosis from the last naupliar to the first copepodite stage (Kwok et al., 2015).

Use of Copepods in Ecotoxicology

Copepods are acknowledged as highly effective bioindicators of ecosystem pollution, with various toxicity testing protocols developed, including acute tests, multi-generation life cycle

tests, and short-term toxicity tests, assessing responses in individual actions, immune and endocrine processes, development, growth, and reproduction (Hussain et al., 2020). Since the 1940's, copepods have remained a popular model organism with most toxicity studies utilizing either static or static-renewal systems. Among copepod species, *Amphiascus tenuiremis*, *Nitocra spinipes*, and *Acartia tonsa* have seen the establishment of standardized full life-cycle testing protocols (Raisuddin et al., 2007). Unfortunately, freshwater copepods have not received sufficient attention, lacking protocols for toxicity tests. Nevertheless, *Mesocyclops* genera have been identified as a suitable option (Kulkarni et al., 2013).

Main Copepods Species in the Ecotoxicology of Mexico

Research on copepods in Mexico has traditionally focused on their geographic distribution and taxonomic description. However, there is a growing interest and recognition of the important role copepods play in ecotoxicological studies. Several copepod species have become essential models for evaluating environmental impacts and conducting ecotoxicological tests. A simple search in the Scopus and Web of Science databases using the words "toxicology," "copepods," and "environmental assessment" shows that some of the marine species examined include *Acartia tonsa*, *A. clausi*, *A. spinata*, *A. lilljeborgii*, *Corycaeus amazonicus*, *Temora discaudata*, *Subeucalanus subcrassus*, *Acrocalanus longicornis*, *Calanus pacificus*, *Euterpina acutifrons*, and *Pseudodiaptomus euryhalinus*. Additionally, freshwater species such as *Acanthocyclops robustus*, *A. vernalis*, *A. americanus*, *Mastigodiaptomus montezumae*, *Paracyclops novenarius*, and *Eucyclops chihuahuensis* have also been used.

The research on copepods in Mexico is limited but existing studies emphasize their importance. A specific study examined the reproductive response of the copepod *A. clausi* to the toxic dinoflagellate *Gymnodinium catenatum* suggesting that this species plays a crucial role in controlling red tides in Concepción Bay (Palomares-García et al., 2006). Another work identified the high tolerance of *P. novenarius* in a water body with high Arsenic concentrations ($>50 \text{ mg L}^{-1}$), revealing that despite the high concentrations, there was no impact on its morphology or development (Uc-Castillo et al., 2022). Additionally, sensitivity and response were evaluated using oxidative stress biomarkers on *A. americanus* exposed to Cadmium, Chromium, Copper, Mercury, Manganese, Nickel, and Lead, emphasizing the need to understand how copepods, both marine and freshwater, respond to various environmental factors and contaminants (Sobrino-Figueroa et al., 2020). A recent investigation examines the impact of invasive species, such as *M. pehpeiensis*, not only from an ecotoxicological perspective but also considering their effects on biodiversity reduction and the potential impact on Mexican planktonic communities (Valencia-Vargas et al., 2023).

Challenges

Ecotoxicological risk assessment commonly involves selecting species based on their sensitivity to various toxins and their suitability for laboratory cultivation. However, this approach often overlooks the diverse life history strategies copepods adopt in their natural environments. This oversight could have substantial implications for these species' vulnerability to contaminant exposure. Consequently, there is an urgent call for detailed and carefully orchestrated research within the realm of copepod ecotoxicology. Such research is pivotal in addressing the current disparity between ecological and ecotoxicological studies on copepods, with the goal of accurately identifying and incorporating representative species into assessments.

Conclusions and Recommendations

The focus of this comprehensive brief review is on the significance of ecotoxicology in Mexican aquatic ecosystems, specifically directing attention towards zooplankton. The urgency to advance research in this field highlights the need to explore diverse ecosystems, particularly those in understudied regions. The inclusion of native species in toxicity studies emerges as a crucial aspect to ensure realistic outcomes and prevent the introduction of invasive species. Key approaches proposed for enhancing understanding include conducting detailed research on emerging contaminants (pesticides, animal pharmaceuticals, pharmaceuticals and personal care products, industrial compounds), heavy metals, detergents, as well as integrating environmental genomics into zooplankton studies. Furthermore, the establishment of standardized protocols, specifically with freshwater copepod species, is emphasized as an imperative need. Overall, these future perspectives collectively aim to strengthen the knowledge base in aquatic ecotoxicology in Mexico, providing valuable insights for the enduring preservation of the country's aquatic ecosystems.

Acknowledgements

RMMG thanks Consejo Mexiquense de Ciencia y Tecnología (COMECYT) for the support granted through Cátedras COMECYT-EDOMÉX program (FOLIO: ESYCA2023-140185). CAZB thanks CONACYT Mexico (492558) and COMECYT-EDOMÉX (CAT2021-0131). UAR thanks the postdoctoral fellowship program 2023 – 2024 (CONACYT: 490764) and the Universidad Nacional Autónoma de México Postdoctoral Program (POSDOC) through the Dirección General del Personal Académico of UNAM.

Authors' Contributions

CAZB, UAR, MGRM, JMEH, and FJTM designed, analyzed, and wrote the study; JMEH and CAZB developed the graphic representation. FJTM acquired financial funds.

References

- Aguilar-Aguilar, A., de León-Martínez, L. D., Forgiomny, A., Soto, N. Y. A., Mendoza, S. R., & Zárate-Guzmán, A. I. (2023). A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater. *Science of the Total Environment*, 167426. <https://doi.org/10.1016/j.scitotenv.2023.167426>
- Alayo, M., & Iannacone, J. (2002). Ensayos ecotoxicológicos con petróleo crudo, Diesel 2 y Diesel 6 con dos subespecies de *Brachionus plicatilis* Müller 1786 (Rotifera: Monogononta). *Gayana (Concepción)*, 66(1), 45-58. <http://doi.org/10.4067/S0717-65382002000100007>
- Barata, C., Campos, B., Rivetti, C., LeBlanc, G. A., Etycheson, S., McKnight, S., & De Schamphelaere, K. (2017). Validation of a two-generational reproduction test in *Daphnia magna*: an interlaboratory exercise. *Science of the Total Environment*, 579, 1073-1083. <https://doi.org/10.1016/j.scitotenv.2016.11.066>
- Bernatowicz, P., Radzikowski, J., Paterczyk, B., Bebas, P., & Slusarczyk, M. (2018). Internal structure of *Daphnia ephippium* as an adaptation to dispersion. *Zoologischer Anzeiger*, 277, 12-22. <https://doi.org/10.1016/j.jcz.2018.06.006>
- Breitholtz, M., Rudén, C., Hansson, S. O., & Bengtsson, B. E. (2006). Ten challenges for improved ecotoxicological testing in environmental risk assessment. *Ecotoxicology and Environmental Safety*, 63(2), 324-335. <https://doi.org/10.1016/j.ecoenv.2005.12.009>
- Cervantes-Martínez, A., Durán Ramírez, C. A., Elías-Gutiérrez, M., García-Morales, A. E., Gutiérrez-Aguirre, M., Jaime, S., & Suárez-Morales, E. (2023). Freshwater Diversity of Zooplankton from Mexico: Historical Review of Some of the Main Groups. *Water*, 15(5), 858. <https://doi.org/10.3390/w15050858>
- Connors, K. A., Brill, J. L., Norberg-King, T., Barron, M. G., Carr, G., & Belanger, S. E. (2022). *Daphnia magna* and *Ceriodaphnia dubia* have similar sensitivity in standard acute and chronic toxicity tests. *Environmental toxicology and chemistry*, 41(1), 134-147. <https://doi.org/10.1002/etc.5249>
- Dahms, H. U., Hagiwara, A., & Lee, J. S. (2011). Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. *Aquatic Toxicology* 101(1), 1-12. <https://doi.org/10.1016/j.aquatox.2010.09.006>
- De Meester, L., Declerck, S., & Ger, K. (2023). Beyond *Daphnia*: a plea for a more inclusive and unifying approach to freshwater zooplankton ecology. *Hydrobiologia*, 850, 1-11. <https://doi.org/10.1007/s10750-023-05217-3>
- Declerck, S. A., & de Senerpont Domis, L. N. (2023). Contribution of freshwater metazooplankton to aquatic ecosystem services: an overview. *Hydrobiologia*, 850(12), 2795-2810. <https://doi.org/10.1007/s10750-022-05001-9>
- Demidof, D. C., Alvarado-Flores, J., Acosta-González, G., Ortega-Camacho, D., Pech-Chi, S. Y., Borbolla-Vázquez, J., Alí Díaz-Hernández, J., & Cejudo, E. (2022). Distribution and

- ecological risk of metals in an urban natural protected area in the Riviera Maya, Mexico. *Environmental Monitoring and Assessment* 194(8), 579. <https://link.springer.com/10.1007/s10661-022-10244-z>.
- Di Lorenzo, T., Avramov, M., Galassi, D. M. P., Iepure, S., Mammola, S., Reboleira, A. S. P., & Hervant, F. (2023). Physiological tolerance and ecotoxicological constraints of groundwater fauna. In *Groundwater Ecology and Evolution* (pp. 457-479). Academic Press. <https://doi.org/10.1016/B978-0-12-819119-4.15004-8>
- Dole-Olivier, M. J., Galassi, D. M. P., Marmonier, P., & Creuzé des Châtelliers, M. (2000). The biology and ecology of lotic microcrustaceans. *Freshwater biology*, 44(1), 63-91. <https://doi.org/10.1046/j.1365-2427.2000.00590.x>
- Elías-Gutiérrez, M., & Gagneten, A. (2011). Efecto de los metales sobre microcrustáceos de agua dulce: Avances metodológicos y potencialidad de cladóceros y copépodos como organismos test. *Revista peruana de biología*, 18(3), 389-396. <https://doi.org/10.15381/rpb.v18i3.460>
- Elías-Gutiérrez, M., & Ortiz, L. M. (2017) Estado actual del conocimiento de la diversidad del zooplancton (invertebrados) de agua dulce de la Península de Yucatan, utilizando la taxonomía integrativa. *Teoría y Praxis*, 25, 31-48.
- Elías-Gutiérrez, M., Jeronimo, F. M., Ivanova, N. V., Valdez-Moreno, M., & Hebert, P. D. (2008). DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. *Zootaxa*, 1839(1), 1-42. <https://doi.org/10.11646/zootaxa.1839.1.1>
- Elías-Gutiérrez, M., Suárez-Morales, E., Gutiérrez-Aguirre, M. A., Silva-Briano, M., Granados-Ramírez, J. G., & Garfias-Espejo, T. (2008). *Cladocera y Copepoda de las aguas continentales de México. Guía ilustrada* (1^a ed.). UNAM, ECOSUR, SEMARNAT CONACYT, CONABIO.
- Espinosa-Rodríguez, C. A., Jiménez-Santos, M. A., Martínez-Miranda, D. M., Piedra-Ibarra, E., Rivera-De la Parra, L., & Lugo-Vázquez, A. (2023). *Daphnia magna* (Crustacea: Anomopoda) in central Mexico wetlands: implications of escape from ecotoxicological laboratories. *Biological Invasions*, 1-7. <https://doi.org/10.1007/s10530-023-03164-7>
- Fontaneto, D., & Plewka, M. (2021). Phylum Rotifera. In B. Schierwater & R. DeSalle (Eds.) *Invertebrate Zoology: A Tree of Life Approach* (1st ed.). <https://doi.org/10.1201/9780429159053>
- Gama-Flores, José Luis, Sarma, S. S. S., Nandini, S. (2004). Acute and chronic toxicity of the pesticide methyl parathion to the rotifer *Brachionus Angularis* (Rotifera) at different algal (*Chlorella Vulgaris*) food densities. *Aquatic Ecology* 38(1), 27-36. <https://doi.org/10.1023/B:AECO.0000020986.92471.32>
- Gasca, R. (2010). Abrumadora diversidad del zooplancton marino. *Ecofronteras*, (40), 16-18. <https://revistas.ecosur.mx/ecofronteras/index.php/eco/article/view/829>
- Gómez, S., & Morales-Serna, F. N. (2014). Updated checklist of published and unpublished records of harpacticoid copepods (Crustacea: Copepoda: Harpacticoida) from Mexico. *Proceedings of the Biological Society of Washington*, 127(1), 99-121. <https://doi.org/10.2988/0006-324X-127.1.99>
- González-González, E. D., Gómez-Oliván, L. M., Galar-Martínez, M., Vieyra-Reyes, P., Islas-Flores, H., García-Medina, S., & Pérez-Pastén, R. (2014). Metals and nonsteroidal anti-inflammatory pharmaceuticals drugs present in water from Madín Reservoir (Mexico) induce

- oxidative stress in gill, blood, and muscle of common carp (*Cyprinus carpio*). *Archives of environmental contamination and toxicology*, 67, 281-295. <https://doi.org/10.1007/s00244-014-0048-0>
- Guzmán-Colis, G., Thalasso, F., Ramírez-López, E. M., Rodríguez-Narciso, S., Guerrero-Barrera, A. L., & Avelar-González, F. J. (2011). Evaluación espacio-temporal de la calidad del agua del río San Pedro en el Estado de Aguascalientes, México. *Revista internacional de contaminación ambiental*, 27(2), 89-102.
- Halbach, U., Siebert, M., Westermayer, M., & Wissel, C. (1983). Population ecology of rotifers as a bioassay tool for ecotoxicological tests in aquatic environments. *Ecotoxicology and Environmental Safety*, 7(5), 484–513. [https://doi.org/10.1016/0147-6513\(83\)90088-X](https://doi.org/10.1016/0147-6513(83)90088-X)
- Hernández-Lucero, J. A., Sarma, S. S. S., & Nandini, S. (2023). Behavioral and demographic responses of the predatory rotifer *Asplanchna Sieboldii* (Leydig, 1854) fed prey (*Platonus Patulus* (Müller, 1786)) previously exposed to cadmium and microplastics. *Aquatic Ecology*. <https://link.springer.com/10.1007/s10452-023-10061-7>.
- Hernández-Zamora, M., & Martínez-Jerónimo, F. (2019). Exposure to the azo dye Direct blue 15 produces toxic effects on microalgae, cladocerans, and zebrafish embryos. *Ecotoxicology*, 28, 890-902. <https://doi.org/10.1007/s10646-019-02087-1>
- Hernández-Zamora, M., Rodríguez-Miguel, A., Martínez-Jerónimo, L., & Martínez-Jerónimo, F. (2023). Combined toxicity of glyphosate (Faena®) and copper to the American cladoceran *Daphnia exilis*—A two-generation analysis. *Water*, 15, 2018. <https://doi.org/10.3390/w15112018>
- Hjorth, M., Haller, R., & Dahllöf, I. (2006). The use of ¹⁴C tracer technique to assess the functional response of zooplankton community grazing to toxic impact. *Marine environmental research*, 61(3), 339-351. <https://doi.org/10.1016/j.marenvres.2005.11.003>
- Hussain, M. B., Laabir, M., & Yahia, M. N. D. (2020). A novel index based on planktonic copepod reproductive traits as a tool for marine ecotoxicology studies. *Science of the Total Environment*, 727, 138621. <https://doi.org/10.1016/j.scitotenv.2020.138621>
- Huynh, T. V., Hall, A. S., & Xu, S. (2023). The transcriptomic signature of cyclical parthenogenesis. *Genome Biology and Evolution*, 15(7), evad122. <https://doi.org/10.1093/gbe/evad122>
- Kalinowska, K., Ejsmont-Karabin, J., Rzepecki, M., Kostrzewska-Szlakowska, I., Feniova, I. Y., Palash, A., & Dzialowski, A. R. (2015). Impacts of large-bodied crustaceans on the microbial loop. *Hydrobiologia*, 744, 115-125. <https://doi.org/10.1007/s10750-014-2066-3>
- Kulkarni, D., Gergs, A., Hommen, U., Ratte, H., & Preuss, T. (2013). A plea for the use of copepods in freshwater ecotoxicology. *Environmental Science and Pollution Research*, 20, 75-85. <https://doi.org/10.1007/s11356-012-1117-4>
- Kwok, K. W., Souissi, S., Dur, G., Won, E. J., & Lee, J. S. (2015). Copepods as reference species in estuarine and marine waters. In *Aquatic Ecotoxicology* (pp. 281-308). Academic Press. <https://doi.org/10.1016/B978-0-12-800949-9.00012-7>
- López-López, E., & Serna-Hernández, J. A. (1999). Variación estacional del zooplancton del embalse Ignacio Allende, Guanajuato, México y su relación con el fitoplancton y factores ambientales. *Biología Tropical*, 47(4), 643-657. <https://doi.org/10.15517/rbt.v47i4.19220>
- Lozano, V. (2020). *Estudio del impacto de la mezcla de los herbicidas glifosato y 2,4-D sobre comunidades microscópicas de agua dulce y la calidad del agua: aproximación*

- ecotoxicológica en microcosmos y mesocosmos al aire libre [Tesis de doctorado] Universidad de Buenos Aires.
- Manríquez-Guzmán, D. L., Chaparro-Herrera, D. J., & Ramírez-García, P. (2023). Microplastics are transferred in a trophic web between zooplankton and the amphibian Axolotl (*Ambystoma mexicanum*): Effects on their feeding behavior. *Food Webs*, 37, e00316. <https://doi.org/10.1016/j.fooweb.2023.e00316>
- Martínez-Jerónimo, F., Rodríguez-Estrada, J., & Martínez-Jerónimo, L. (2008). *Daphnia exilis* Herrick, 1895 (Crustacea: Cladocera): Una especie zooplanctónica potencialmente utilizable como organismo de prueba en bioensayos de toxicidad aguda en ambientes tropicales y subtropicales. *Revista internacional de contaminación ambiental*, 24(4), 153-159. <https://doi.org/10.1007/BF00197197>
- Martínez-Jerónimo, F., & Martínez-Jerónimo, L. (2023). Do short-term, reduced-volume methods accurately reflect chronic toxic effects in the cladoceran *Ceriodaphnia dubia*? A study with the reference toxicant hexavalent chromium. *Frontiers in Environmental Science*, 11. <https://doi.org/10.3389/fenvs.2023.1321257>
- Martínez-Jerónimo, F., Villaseñor, R., Espinosa, F., & Ríos, G. (1993). Use of life-tables and application factors for evaluating chronic toxicity of kraft mill wastes on *Daphnia magna*. *Bulletin of environmental contamination and toxicology*, 50, 377-384. <https://doi.org/10.1007/BF00197197>
- Mendoza-Chávez, Y. J., Uc-Castillo, J. L., Gutiérrez-Aguirre, M. A., Cervantes-Martínez, A., & Martínez-Villegas, N. (2022). Identification of Microcrustaceans as Potential Bioindicators of Arsenic in Tropical Water Bodies. *Archives of Environmental Contamination and Toxicology*, 83(3), 272-283. <https://doi.org/10.1007/s00244-022-00961-4>
- Montalvo, Y., & Luque, J. (2009). *Guía de evaluación de riesgos ambientales*. Dirección General de Calidad Ambiental Vicerrectoría de Gestión Ambiental.
- Moreno, H. D., Köring, M., Di Pane, J., Tremblay, N., Wiltshire, K. H., Boersma, M., & Meunier, C. L. (2022). An integrated multiple driver mesocosm experiment reveals the effect of global change on planktonic food web structure. *Communications Biology*, 5(1), 179. <https://doi.org/10.1038/s42003-022-03105-5>
- Nandini, S., & Sarma, S. S. S. (2023). Experimental Studies on Zooplankton-Toxic Cyanobacteria Interactions: A Review. *Toxics*, 11(2), 176. <https://doi.org/10.3390/toxics11020176>
- Nandini, S., García, P. R., & Sarma, S. S. S. (2016). Water quality indicators in Lake Xochimilco, Mexico: zooplankton and *Vibrio cholerae*. *Journal of limnology*, 75(1). <https://doi.org/10.4081/jlimnol.2015.1213>
- Nandini, S., Zamora-Barrios, C. A., & Sarma, S. S. S. (2020). A long-term study on the effect of cyanobacterial crude extracts from lake Chapultepec (Mexico City) on Selected zooplankton species. *Environmental Toxicology and Chemistry*, 39(12), 2409-2419. <https://doi.org/10.1002/etc.4875>
- Organisation for Economic Co-operation and Development (OECD). (2011) *OECD guideline for testing and assessment of chemicals 158. Report of progress on the interlaboratory validation of the OECD harpacticoid copepod development and reproduction test*. <https://www.oecd-ilibrary.org/10.1787/5k12994e-en>

- org/en/publications/guidance-document-on-harpacticoid-copepod-development-and-reproduction-test-with-amphiascus_691439a5-en.html
- Palomares-García, R., Bustillos-Guzmán, J., Band-Schnidt, C. J., López-Cortés, D., & Luckas, B. (2006). Effect of the toxic dinoflagellate *Gymnodinium catenatum* on the grazing, egg production, and hatching success of the copepod *Acartia clausi*. *Ciencias Marinas*, 32(1B), 97-109. <https://doi.org/10.1007/s00227-006-0568-x>
- Pastorino, P., Prearo, M., & Barceló, D. (2024). Ethical principles and scientific advancements: in vitro, in silico, and non-vertebrate animal approaches for a green ecotoxicology. *Green Analytical Chemistry*, 100096. <https://doi.org/10.1016/j.greeac.2024.100096>
- Peijnenburg, K., & Goetze, E. (2013). High evolutionary potential of marine zooplankton. *Ecology and Evolution*, 3(8), 2765-2781. <https://doi.org/10.1002/ece3.644>
- Pérez-Morales, A., Sarma, S. S. S., & Nandini, S. (2014). Feeding and filtration rates of zooplankton (rotifers and cladocerans) fed toxic cyanobacterium (*Microcystis aeruginosa*). *Journal of Environmental Biology*, 35(6), 1013. <https://doi.org/10.1127/fal/2020/1285>
- Pérez-Morales, A., Sarma, S. S. S., & Nandini, S. (2015). Microcystins production in *Microcystis* induced by *Daphnia pulex* (Cladocera) and *Brachionus calyciflorus* (Rotifera). *Hidrobiológica*, 25(3), 411-415. <https://hidrobiologica.itz.uam.mx/index.php/revHidro/article/view/434>.
- Pérez-Morales, A., Sarma, S. S. S., Nandini, S., Espinosa-Rodríguez, C. A., Rivera-De la & Parra, L. (2020). Demographic responses of selected rotifers (Rotifera) and cladocerans (Cladocera) fed toxic *Microcystis aeruginosa* (Cyanobacteria). *Fundamental and Applied Limnology*, 193, 261-274. <https://doi.org/10.1127/fal/2020/1285>
- Pineda-Mendoza, R. M., Olvera-Ramírez, R., & Martínez-Jerónimo, F. (2012). Microcystins produced by filamentous cyanobacteria in urban lakes. A case study in Mexico City. *Hidrobiológica*, 22(3), 290-298. <https://hidrobiologica.itz.uam.mx/index.php/revHidro/article/view/730>
- Poulin R. (1996) Sexual size dimorphism and transition to parasitism in copepods. *Evolution*, 50(6), 2520-2523. <https://doi.org/10.1111/j.1558-5646.1996.tb03639.x>
- Raisuddin, S., Kwok, K. W., Leung, K. M., Schlenk, D., & Lee, J. S. (2007). The copepod *Tigriopus*: a promising marine model organism for ecotoxicology and environmental genomics. *Aquatic Toxicology*, 83(3), 161-173. <https://doi.org/10.1016/j.aquatox.2007.04.005>
- Reid, J. W., & Strayer, D. L. (1994). *Diacyclops dimorphus*, a new species of copepod from Florida, with comments on morphology of interstitial cyclopine cyclopoids. *Journal of the North American Benthological Society*, 13(2), 250-265. <https://doi.org/10.2307/1467243>
- Relyea, R., & Hoverman, J. (2006). Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. *Ecology Letters*, 9(10), 1157-1171. <https://doi.org/10.1111/j.1461-0248.2006.00966.x>
- Rico-Martínez, R., Arzate-Cárdenas, M., Alvarado-Flores, J., Pérez-Legaspi, A., Santos-& Medrano, E. (2017). Rotifers as model for ecotoxicology and genotoxicology. Ecotoxicology and Genotoxicology: nontraditional aquatic models. In Ecotoxicology and Geonotoxicology: Non-traditional Aquatic Models (pp. 48-69). <https://doi.org/10.1039/9781782629887-00048>
- Riisgård, H. U., Thiel, M., & Watling, L. (2015). Filter-feeding mechanisms in crustaceans. In M. Thiel, & L. Watling (Eds.), *Life styles and feeding biology* (Vol. 2), (pp. 418-463). Oxford University Press.

- Rotolo, F., Vitiello, V., Pellegrini, D., Carotenuto, Y., & Buttino, I. (2021). Historical control data in ecotoxicology: Eight years of tests with the copepod *Acartia tonsa*. *Environmental Pollution*, 284, 117468. <https://doi.org/10.1016/j.envpol.2021.117468>
- Rubio-Franchini, I., López-Hernández, M., Ramos-Espinosa, M. G., & Rico-Martínez, R. (2016). Bioaccumulation of metals arsenic, cadmium, and lead in zooplankton and fishes from the Tula River Watershed, Mexico. *Water, Air and Soil Pollution*, 227, 1-12. <https://doi.org/10.1007/s11270-015-2702-1>
- Rubio-Franchini, I., Mejía Saavedra, J., & Rico-Martínez, R. (2008). Determination of lead in samples of zooplankton, water, and sediments in a Mexican reservoir: Evidence for lead biomagnification in lower/intermediate trophic levels? *Environmental Toxicology*, 23, 459-465. <https://doi.org/10.1002/tox.20357>
- Rubio-Franchini, I., & Rico-Martínez, R. (2011). Evidence of lead biomagnification in invertebrate predators from laboratory and field experiments. *Environmental Pollution*, 159, 1831-1835. <https://doi.org/10.1016/j.envpol.2011.03.021>
- Santos-Medrano, G. E., & Rico-Martínez, R. (2019). Acute sensitivity comparison among *Daphnia magna* straus, 1820 *Daphnia pulex* leydig, 1860 and *Simocephalus vetulus* müller, 1776, exposed to nine toxicants. *Turkish Journal of Fisheries and Aquatic Sciences*, 19(7), 615-623. https://doi.org/10.4194/1303-2712-v19_7_08
- Sarma, S. S. S., & Nandini, S. (2006). Review of recent ecotoxicological studies on cladocerans. *Journal of Environmental Science and Health, Part B*, 41(8), 1417-1430. <https://doi.org/10.1080/03601230600964316>
- Sarma, S. S. S., & Nandini, S. (2017). *Rotíferos Mexicanos (Rotifera)*. Estado de México. Manual de Enseñanza (1^a ed.). Universidad Nacional Autónoma de México, Mexico City/Facultad de Estudios Superiores Iztacala, Tlalnepantla.
- Sarma, S. S. S. González-Pérez, B. K., Moreno-Gutiérrez, R. M., & Nandini, S. (2014). Effect of paracetamol and diclofenac on population growth of *Platynus patulus* and *Moina macrocopa*. *Journal of Environmental Biology*, 35(1), 119. <https://pubmed.ncbi.nlm.nih.gov/24579527/>
- Sarma, S. S. S., Jiménez-Santos, M.A., & Nandini, S. (2021). Rotifer species diversity in Mexico: an updated checklist. *Diversity* 13(7), 291. <https://www.mdpi.com/1424-2818/13/7/291>
- Sibly, R. M., & Hone, J. (2002). Population growth rate and its determinants: an overview. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 357(1425), 1153-1170. <https://doi.org/10.1098/rstb.2002.1117>
- Smirnov, N. N. (2017). *Physiology of the Cladocera* (2nd ed.). Academic Press. <https://doi.org/10.1016/B978-0-12-805194-8.00015-5>
- Sobrino-Figueroa, A., Álvarez Hernandez, S. H., & Silva-C, C. A. (2020). Evaluation of the freshwater copepod *Acanthocyclops americanus* (Marsh, 1983) (Cyclopidae) response to Cd, Cr, Cu, Hg, Mn, Ni and Pb. *AIMS Environmental Science*, 7(6). <https://doi.org/10.3934/envronsci.2020029>
- Terekhova, V. A., Wadhia, K., Fedoseeva, E. V., & Uchanov, P. V. (2018). Bioassay standardization issues in freshwater ecosystem assessment: test cultures and test conditions. *Knowledge and Management of Aquatic Ecosystems*, 419, 32. <https://doi.org/10.1051/kmae/2018015>
- Torres-Guzmán, F., Avelar-González, F.J., & Rico-Martínez, R. (2010). An assessment of chemical and physical parameters, several contaminants including metals, and toxicity in the seven major

- wastewater treatment plants in the state of Aguascalientes, Mexico. *Journal of Environmental Science and Health Part A*, 45, 2–13. <https://doi.org/10.1080/10934520903388517>
- Torres-Guzmán, F., González, F. J. A., & Martínez, R. R. (2010). Implementing *Lecane quadridentata* acute toxicity tests to assess the toxic effects of selected metals (Al, Fe and Zn). *Ecotoxicology and Environmental Safety*, 73(3), 287–295. <https://doi.org/10.1016/j.ecoenv.2009.10.006>
- Tovar-Aguilar, G. I., Arzate-Cárdenas, M. A., & Rico-Martínez, R. (2019). Effects of diclofenac on the freshwater rotifer *Lecane Papuana* (Murray, 1913) (Monogononta: Lecanidae). *Hidrobiológica*, 29(2), 63–72. <https://doi.org/10.24275/uam/itz/dcbi/hidro/2019v29n2/Tovar>
- U.S. Environmental Protection Agency. (2002). *Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms* (5th ed), EPA 821-R-02–012. US Environmental Protection Agency, Washington.
- Uc-Castillo, J. L., Cervantes-Martínez, A., & Gutiérrez-Aguirre, M. A. (2022). Evaluation of arsenic effects on *Paracyclops novenarius* Reid, 1987: a cyclopoid copepod in central-north of Mexico. *Environmental Science and Pollution Research*, 29(41), 61674–61684. <https://doi.org/10.1007/s11356-022-18959-9>
- Valencia-Vargas, M. A., Nandini, S., Sarma, S. S. S., & Castellanos-Páez, M. E. (2023). Indirect effects of invasive and native predatory copepods (*Mesocyclops pehpeiensis* Hu and *M. longisetus curvatus* Dussart) on the population growth of brachionid rotifers. *Hydrobiologia*, 851, 3137–3148. <https://doi.org/10.1007/s10750-023-05340-1>
- Versteeg, D. J., Stalmans, M., Dyer, S. D., & Janssen, C. (1997). *Ceriodaphnia* and *Daphnia*: A comparison of their sensitivity to xenobiotics and utility as a test species. *Chemosphere*, 34(4), 869–892. [https://doi.org/10.1016/S0045-6535\(97\)00014-3](https://doi.org/10.1016/S0045-6535(97)00014-3)
- Von der Ohe, P. C., & Liess, M. (2004). Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. *Environmental Toxicology and Chemistry: An International Journal*, 23(1), 150–156. <https://doi.org/10.1897/02-577>
- Wilson, A. E., Sarnelle, O., & Tillmanns, A. R. (2006). Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta analyses of laboratory experiments. *Limnology and Oceanography*, 51(4), 1915–1924. <https://doi.org/10.4319/lo.2006.51.4.1915>
- Won, E. J., Han, J., Kim, D. H., Dahms, H. U., & Lee, J. S. (2017). Rotifers in Ecotoxicology. In Hagiwara, A., Yoshinaga, T. (Eds.) *Rotifers. Fisheries Science Series*. Springer, Singapore. https://doi.org/10.1007/978-981-10-5635-2_10
- Zamora-Barrios, C. A., Nandini, S., & Sarma, S. S. S. (2017). Effect of crude extracts from cyanobacterial blooms in Lake Texcoco (Mexico) on the population growth of *Brachionus Calyciflorus* (Rotifera). *Toxicon*, 139, 45–53. <https://doi.org/10.1016/j.toxicon.2017.09.013>
- Zamora-Barrios, C. A., Nandini, S., & Sarma, S. S. S. (2019). Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico. *Environmental pollution*, 249, 267–276. <https://doi.org/10.1016/j.envpol.2019.03.029>
- Zimmermann, S., & Sures, B. (2023). Environmental Toxicology. In Hock, F.J., Pugsley, M.K. (Eds.) *Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays*. (1st ed.) Springer. https://doi.org/10.1007/978-3-030-73317-9_138-1

Topics of Limnological Research in Mexico, coordinated by Alfredo Pérez Morales, was published in Dirección General de Publicaciones of the Universidad de Colima, avenida Universidad 333, Colima, Colima, México, www.ucol.mx. The edition was completed in December 2025. The Arial family was used for typesetting. Non Periodical Editorial Program: Eréndira Cortés Ventura. Cover Design: Adriana Minerva Vázquez Chávez. English Proofreader: Yul Ceballos. Interior Design: José Luis Ramírez Moreno and Leticia Bermúdez Aceves.

This book takes a significant step in showcasing the relevance of limnology to our survival. Freshwater habitats, though they cover less than 1 % of the Earth's surface, are home to a substantial portion of the world's biodiversity—at least 10 % of all known species. Freshwater habitats and the biodiversity they support are under threat. Moreover, our survival depends on access to high-quality freshwater. This book not only highlights the beauty of limnology and the scientific methods used to study it, but it also draws attention to the major causes of biodiversity loss in freshwater ecosystems. It shows all readers what it means to deal with inland waters as a scientist interested in understanding ecosystems and protecting them.

ISBN: 978-968-9733-13-3

9 789689 733133

UNIVERSIDAD DE COLIMA