

Topics of limnological research in Mexico

Coordinator
Alfredo Pérez Morales

UNIVERSIDAD DE COLIMA

Topics of limnological research in Mexico

buen^{EN}plan

UNIVERSIDAD DE COLIMA

Dr. Christian Jorge Torres Ortiz Zermeño, Rector

Mtro. Joel Nino Jr., Secretario General

Mtro. Jorge Martínez Durán, Coordinador General de Comunicación Social

Mtro. Adolfo Álvarez González, Director General de Publicaciones

Mtra. Irma Leticia Bermúdez Aceves, Directora Editorial

Topics of limnological research in Mexico

Coordinator
Alfredo Pérez Morales

UNIVERSIDAD DE COLIMA

Topics of Limnological Research in Mexico

© UNIVERSIDAD DE COLIMA, 2025
Avenida Universidad 333
C.P 28040, Colima, Colima, México
Dirección General de Publicaciones
Telephone numbers: 312 316 1081 and 312 316 1000, extension: 35004
Email: publicaciones@ucol.mx
www.ucol.mx

ISBN electrónico: 978-968-9733-13-3
DOI: 10.53897/LI.2025.0032.UCOL
5E.1.1/317000/308/2024 Edición de publicación no periódica

All rights reserved according to law
Published in Mexico

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

You are free to: Share: copy and redistribute the material in any medium or format. Adapt: remix, transform, and build upon the material under the following terms: Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial: You may not use the material for commercial purposes. ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Cover and interior photographs: Juan Franco Rodríguez

Certified Publishing Process with ISO since 2005
Double blind ruling and editing are registered in the PRED Electronic Publishing System

Registration: LI-020-24
Received: September 2024
Dictamination: November 2024
Published: December 2025

*This book is dedicated to
Dr. Singaraju Sri Subrahmanyam Sarma,
in gratitude for all his teachings in the world of limnology.*

Index

Preface	10
Introduction	13
Analysis of the Ionic Quality of the Water in the North Aquifer and Cozumel Island, Quintana Roo, Mexico	16
<i>Gerardo Hernández-Flores, Martha Angélica Gutiérrez-Aguirre, Adrián Cervantes-Martínez.</i>	
Limnological Variations of a Tropical Semi-arid River Dam System, Central México	34
<i>Martín López-Hernández, Fernando González-Farías, María Guadalupe Ramos-Espinosa, Fernando Córdova-Tapia, Alejandro Gómez-Ponce.</i>	
Temporal Characterization of Water Quality of Rivers in Contrasting Zones of Two Watersheds in Veracruz, Mexico	58
<i>José Antolín Aké-Castillo, Miriam Guadalupe Ramos-Escobedo, Eduardo Aranda-Delgado.</i>	
Environmental Problems on Water Resources: A Review at the Basin Level with Emphasis on Tuxpan River in Veracruz, Mexico	77
<i>Blanca Esther Raya-Cruz, José Luis Alanís-Méndez, Carlos Francisco Rodríguez-Gómez, Karla Cirila Garcés-García.</i>	
Prospective Analysis of Major Phytoplankton Groups in Some Freshwater Bodies in Campeche, Southeastern Gulf of Mexico	94
<i>Juan Alfredo Gómez-Figueroa, Carlos Antonio Poot-Delgado, Jaime Rendón-von Osten, Yuri Okolodkov.</i>	

On the Relevance of Monitoring the Thermal Structure, Community Metabolism and Phytoplankton Ecology of Inland Waters of Mexico in the Context of Global Change	112
<i>Patricia Margarita Valdespino-Castillo, Jorge Alberto Ramírez-Zierold, Rocío Jetzabel Alcántara-Hernández, Mariel Barjau-Aguilar, Mario Alberto Neri-Guzmán, Paola Julieta Cortés Cruz, Oscar Alejandro Gerardo-Nieto, Martín Merino-Ibarra.</i>	
Middle-Term Hydrological and Microalgal Study in the Lower Basin of the Tuxpan River, Veracruz, Mexico	132
<i>Carlos Francisco Rodríguez-Gómez, Gabriela Vázquez, José Antolín Aké-Castillo, Angeles Rosseth Cruz-Ramírez.</i>	
Phytoplankton from two Dams in Central Mexico	153
<i>Gloria Garduño-Solórzano, José Manuel González-Fernández, Valeria Naomi Barranco-Vargas, Karla de la Luz-Vázquez, Cristian Alberto Espinosa-Rodríguez.</i>	
Towards Molecular, Genetic, and Optical Monitoring of Potentially Harmful Cyanobacteria Blooms in Mexican Freshwater Bodies	177
<i>Laura Valdés-Santiago, José Luis Castro-Guillén, Jorge Noé García-Chávez, Cynthia Paola Rangel-Chávez, Rosalba Alonso-Rodríguez, Alejandra Sarahí Ramírez-Segovia, Juan Gualberto Colli-Mull, Rafael Vargas-Bernal.</i>	
Free Living Continental Aquatic Ciliates (Alveolata: Ciliophora) from Mexico: An Overview of their Species Richness and Distribution	194
<i>Rosaura Mayén-Estrada, Carlos Alberto Durán-Ramírez, Fernando Olvera-Bautista, Víctor Manuel Romero-Niembro.</i>	
Potential Use of Rotifer and Cladoceran Diapausing Eggs as a Tool for Taxonomical, Ecological, and Evolutionary Studies	216
<i>Gerardo Guerrero-Jiménez, Elaine Aguilar-Nazare, Frida Sabine Álvarez-Solís, José Cristóbal Román-Reyes, Araceli Adabache-Ortiz, Marcelo Silva-Briano, Rocío Natalia Armas-Chávez.</i>	
Zooplankton Community and Trophic State in Lake Chapala	234
<i>Cristian Alberto Espinosa-Rodríguez, Lizbeth Cano-Parra, Omar Alfredo Barrera-Moreno.</i>	

Seasonal and Diel Influence of Environmental Factors on the Parameters of a Zooplankton Community in a Tropical Coastal Lagoon	255
<i>Manuel Castillo-Rivera.</i>	
Utilization of Zooplankton in Environmental Risk Assessment in Mexico	275
<i>Cesar Alejandro Zamora-Barrios, Rosa Martha Moreno-Gutiérrez,</i>	
<i>Uriel Arreguin-Rebolledo, Mario Joshue Espinosa-Hernández,</i>	
<i>Francisco José Torner-Morales.</i>	
Exploring Zooplankton-Macrophytes Interaction Research in Mexico: Bibliometric Analysis	296
<i>Marco Antonio Jiménez-Santos, Michael Anai Figueroa-Sánchez.</i>	
The Freshwater and Brackish Hydrozoans of Mexico: An Overview of their Diversity	315
<i>José María Ahuatzin-Hernández, Lorena Violeta León-Deniz.</i>	
Aquatic Macroinvertebrates Diversity in the Grijalva and Usumacinta Rivers, Mexico	332
<i>Everardo Barba-Macías, Juan Juárez-Flores, Cinthia Trinidad-Ocaña,</i>	
<i>José Francisco Miranda-Vidal.</i>	
Fishing Among Socioecological Challenges: The Case of the Zimapán Dam	361
<i>Brenda Rodríguez-Cortés, Karina E. Ruiz-Venegas, Martín López-Hernández,</i>	
<i>Alejandro Gómez-Ponce, Fernando Córdova-Tapia.</i>	
Conclusions	379
About the authors	381
Acknowledgements	395

Phytoplankton from Two Dams in Central Mexico

Gloria Garduño-Solórzano¹

José Manuel González-Fernández¹

Valeria Naomi Barranco-Vargas¹

Karla de la Luz-Vázquez¹

Cristian Alberto Espinosa-Rodríguez^{1,2}

¹ Laboratorio de Investigación Científica III. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM). Avenida de los Barrios No. 1, Col. Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México. ggs@unam.mx

² Grupo de Investigación de Limnología Tropical (GILT), UIICSE.

Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM). Avenida de los Barrios No. 1, Col. Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.

Abstract

Reservoirs are environments where phytoplankton develop and sustain food webs. This study explores the structure of the phytoplankton community in two dams and its relationship with six limnological variables from El Llano and Taxhimay reservoirs during September and October 2022. Microalgae were collected in surface layer in three sampling sites with a 20 µm net mesh opening, which were preserved with formaldehyde. The specific richness, the Shannon-Wiener index, the canonical correspondence analysis (CCA), the association quotient, organic contamination, and diatom index were determined. The samples obtained during the two months were markedly different; both ecosystems recorded a warm temperature from 15 to 22°C, pH between 7-8, well oxygenation (5.8 to 9.6 mg/l), low mineralization, and conductivity. Fifty-five species were determined, and six are new records for Mexico. The abundance by taxonomic classes in all the sampling stations was markedly higher for Bacillariophyceae; in particular, observed in Taxhimay in T1 October, with 21,476 cell/ml. *Asterionella formosa* was dominant in both reservoirs, with 79.9 to 96.4 % of the abundance. The H' was recorded from 0.21 to 1.54 bits/ind., it represents variation between the sampling stations and the study months. The CCA positively related conductivity and temperature with *Aulacoseira granulata* var. *angustissima*, *A. granulata* f. *curvata*, *Monactinus simplex*, and *Microcystis panniformis*. The three indexes indicate

eutrophic environments. Furthermore, it is recommended to monitor phytoplankton, in particular, the abundance of *Microcystis* and other Cyanophyceae, as they are harmful algae.

Keywords

Abundance, *Asterionella formosa*, *Aulacoseira granulata*, Bioindicators, Specific richness, State of Mexico.

Introduction

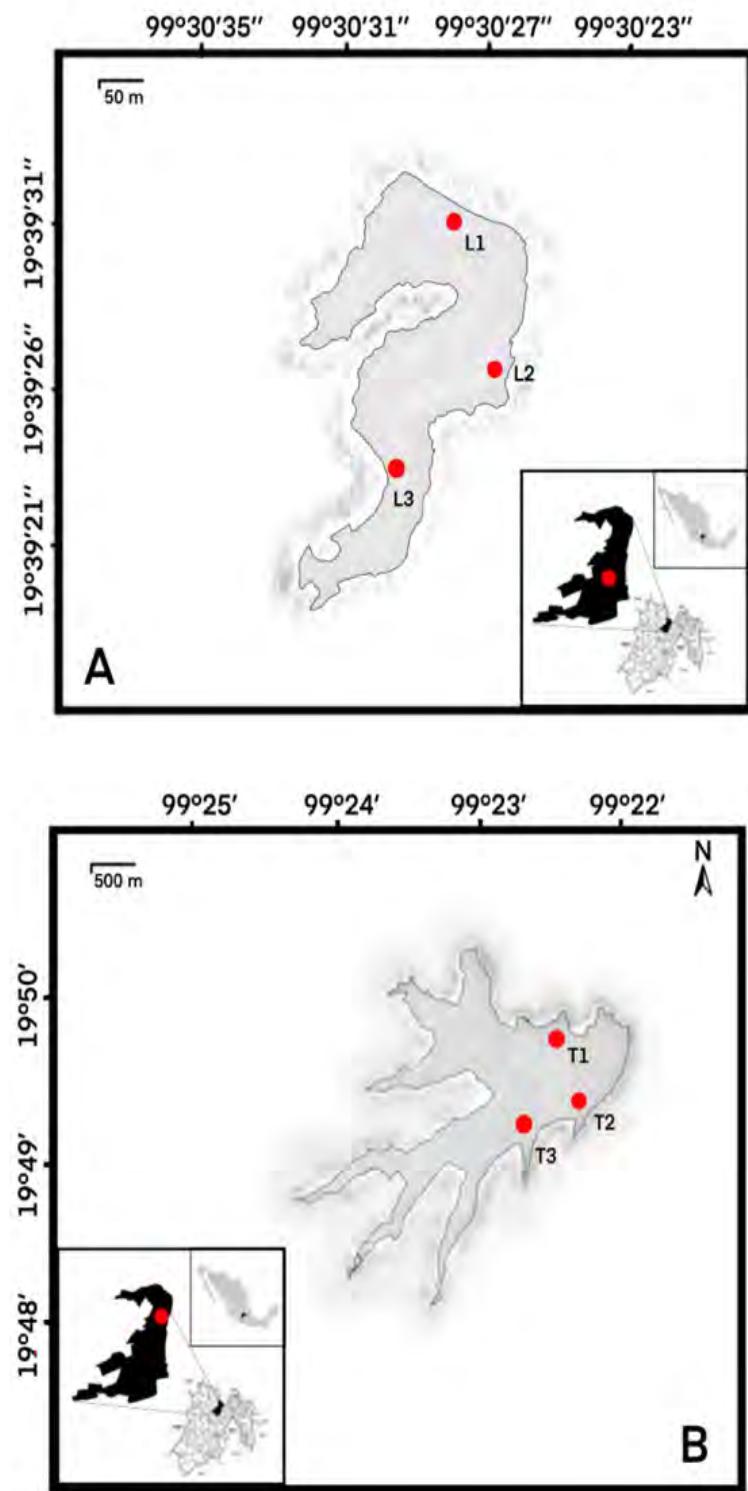
In Mexico, there are more than 10,000 dams that are used for the generation of electrical energy, irrigation, flood control, food production, storage of drinking water, and ecotourism, among others (Arredondo-Figueroa & Flores-Nava, 1992; De la Lanza-Espino & García-Calderón, 2002); the study of these ecosystems is essential to know their relevance and impacts, as well as maintaining the availability of the ecosystem services they provide (Domínguez, 2019), which are essential for maintaining human society's well-being and sustaining life in general. However, despite their recognized importance, inland aquatic environments are among the most threatened ecosystems around the world (WWF, 2022). Climate change, domestic and industrial waste dumping, pollution from pesticides, invasions by exotic species, eutrophication and habitat destruction are the main threats to water bodies (Ghangrekar & Chatterjee, 2018). The diversity of species living in these ecosystems is dominated by organisms with poor swimming ability, such as plankton (Dodds & Whiles, 2010). Within this group, phytoplankton is a diverse community of microorganisms composed of different phyla, such as Cyanobacteria, Bacillariophyta, Chlorophyta, Charophyta, Chrysophyta, Dinoflagellata, Euglenophyta, among others (Wehr et al., 2015). They are important since they fix atmospheric carbon, produce oxygen, and generate biomass through photosynthesis, which is why they constitute the basis of the food webs of aquatic ecosystems (Carrasco-Vargas et al., 2014). Some phytoplankton species are used as biological indicators of water quality due to their short life cycle, and they are sensitive to changes in temperature, dissolved oxygen, pH, turbidity, conductivity, alkalinity, phosphorus, nitrogen, and silica (De Lanza-Espino & García-Calderón, 2002).

Phytoplankton as a bioindicator is a powerful tool that has been used to determine water quality where some change in conditions causes variation in the presence, absence, or abundance of some species, which provides us with information about the trophic state of the habitat where they are found (Bellinger & Sigee, 2010). Bioindicators may have different degrees of tolerance to deterioration; some species are tolerant, while others are pretty sensitive, which helps determine conditions of contamination or eutrophication. In this way, there will be indicator species of good water quality with low levels of eutrophication and other abundant species in eutrophic environments (Nguyen, 2003). For example,

some studies have reported that *Microcystis*, *Aphanizomenon*, *Planktothrix*, *Dolichospermum*, *Cylindrospermopsis*, and *Oscillatoria* (Cyanobacteria); are indicators of eutrophic habitat. While, diatoms such as *Melosira* and *Fragilaria* have been found in waters contaminated with organic matter (Valeriano-Riveros et al., 2014), and Chlorophyta such as *Pandorina* and *Scenedesmus* are referred to contaminated with domestic sewage water (Chadel et al., 2023).

In the central area of Mexico, there are some limnological and phytoplankton analyses from the Zimapán Dam, Querétaro-Hidalgo where González-Fernández et al. (2023) indicated that phytoplankton richness suggests a eutrophic system with dominance of diatoms, Cyanophyta, and Chlorophyta with proliferations of *Microcystis aeruginosa*, *Botryococcus*, and *Stephanococcus*. In another study, Ortega-Murillo et al. (2007) investigated the trophic state of the Mintzita Dam (Michoacán), based on the cellular concentration and distribution of phytoplankton, where they determined a mesotrophic to eutrophic condition with a dominance of *Ulnaria ulna* and *Cocconeis placentula* var. *euglypta*. In Puebla, González-Fernández et al. (2013) analyzed the composition of phytoplankton in three eutrophic reservoirs: the La Laguna, Los Reyes, and Necaxa dams, where the dominant species were *Woronichinia naegeliana*, *Microcystis wesenbergii*, *M. aeruginosa*, *Aulacoseira granulata*, *Fragilaria crotonensis*, and *Asterionella formosa*. For Morelos, Carrasco-Vargas et al. (2014) studied the phytoplankton of the eutrophic-hypereutrophic El Abrevadero reservoir with representatives of Euglenophyceae, Chlorophyceae, Cyanophyceae and Bacillariophyceae.

The State of Mexico is one of the entities where a high number of phytoplankton species has been recorded, with 668 species distributed in 14 classes, 40 orders, 81 families, and 209 genera, with greater dominance of green algae (307 species), followed by diatoms, cyanoprokaryotes, euglenids, with 262, 65 and 13 species, respectively (Garduño-Solórzano et al., 2009). For the tropical reservoir Valle de Bravo, the composition is dominated by *Cyclotella ocellata*, *Fragilaria crotonensis*, *Woronichinia naegeliana*, and *M. wesenbergii* that generate high biomass as a result of the trophic conditions of the system, in particular when the temperature and nutrient levels are high. In contrast, when the water level drops to a difference of up to 12 m, an increase in the biomass of planktic diatoms and a decrease in harmful algae have been evidenced (Valeriano-Riveros et al., 2014). Also, we know that this reservoir supplies drinking water to Mexico City through the Cutzamala system and that the cyanobacteria that develop as *Microcystis smithii*, *M. aeruginosa*, *M. viridis*, *M. flos-aquae*, *Aphanocapsa formosa*, and *Dolichospermum crassum* are species that produce microcystins with maximum values of 71 µg/l from July to September. Based on this information, the ecosystem requires constant monitoring to evaluate water quality (Martínez-Jerónimo et al., 2022). In particular, El Llano and Taxhimay dams in the State


of Mexico are sources for social development and economic activities. Razo-Paredes et al. (2016) analyzed the environmental and microbiological variables in El Llano Dam from July 2015 to May 2016, where the physical and chemical conditions favored the presence of diatoms and cyanobacteria. Additionally, Toledo-Trejo and Razo-Paredes (2018) indicated that the nutrients SO_4^{2-} , NO_3^- , and PO_4^{3-} contributed to the growth of *M. aeruginosa* from the Taxhimay Dam. This reveals that knowledge of microalgae in these reservoirs is scanty, so this work explores the structure of the phytoplankton community in two dams (El Llano and Taxhimay) and its relationship with some limnological variables during September and October 2022.

Materials and Methods

Study Area and Sampling

El Llano Dam belongs to the physiographic province of the Trans-Mexican Volcanic Belt, and is located at the geographical coordinates $19^{\circ}39'24''\text{N}$ $99^{\circ}30'28''\text{W}$ (Fig. 1A), in the town of San Jerónimo Zacapexco in the municipality of Villa del Carbón, State of Mexico. It is an ecotourism park with an area of 40 thousand m^2 , at 2,800 m a.s.l. It is one of the primary sources of water supply for the nearby community. According to the Köppen classification, the climate is temperate-cold (Cw), located in a forested area surrounded by rivers (Toledo-Trejo & Razo-Paredes, 2018). The vegetation is mixed forest, pine forest, oak forest, and induced grassland, including cropped and reforested areas, and 73 species of vertebrates are known from the area (Moreno-Díaz, 2014).

The Taxhimay Dam is between $19^{\circ}49'51''\text{N}$ and $99^{\circ}23'46''\text{W}$ (Fig. 1B) in Villa del Carbón, at 2,200 m a.s.l. The water body covers an area of 365 ha, with 42 billion m^3 . It is characterized by being an area of important outcrops of springs that spring up in the wooded region due to the high forest cover that the Cerro de la Bufa and its foothills have; it has a high permeability caused by the predominance of igneous materials, which favor high rainwater retention (Toledo-Trejo & Razo-Paredes, 2018).

Figure 1. Study Area A) El Llano Dam L1, L2, L3;
B) Taxhimay Dam T1, T2, T3, Red Dots Indicate the Sampling Stations.

Sampling sites were selected randomly in both dams (Table 1) in months with markedly different precipitation records; for September 2022 it was 150.5 mm and for October 2022 with 69 mm of precipitation (Conagua, 2023). 12 samples were obtained from the surface layer, where 10 l of water was filtered for each one with a net mesh size of 20 μm . From the above, in a final volume of 50 ml, the biological material was preserved with formaldehyde at a final concentration of 4 %.

Limnological Variables

A multiparametric model HANNA HI-9146 was used to record temperature, dissolved oxygen, and the percentage of dissolved oxygen saturation. The determination of total alkalinity was carried out by titration (APHA et al., 2005). In addition, the pH was measured using a Cole Parmer potentiometer, model Digi-sense, and the electrical conductivity with a Hanna equipment, model HI98312, in the surface layer of the water column.

Phytoplankton

The phytoplankton was quantified by recording the volume of one ml of sample, and transferred to a preparation where it was placed on the stage under 200X and 400X in a Leica optical microscope (Semina, 1978). In addition, images were obtained with a 10 MP Rising Cam model C3CMOS 10000KPA camera. The works of Bourrelly (1981), Comas (1996), Komárek and Anagnostidis (2002), John and Tsarenko (2002), Figueroa-Torres et al. (2008), Bellinger and Sigge (2010), Wehr et al. (2015), Bicudo et al. (2016), Bicudo and Menezes (2017), Ponce-Márquez et al. (2019), and Bojorge-García and Cantoral-Uriza (2021) were used for taxonomic determination based on the classification indicated in the algae database (Guiry and Guiry, 2023).

Statistical Analysis

To determine phytoplankton diversity, specific richness, and the Shannon-Wiener index, we used Magurran (2004). To categorize the phytoplankton species, an Olmstead-Tukey analysis was carried out according to Sokal and Rohlf (1981). The following criterion was applied: 1) Species with abundance and frequency values above the median were considered dominant; 2) Species with abundance values below the median, but above the median frequency were considered constant; 3) Species that showed values above the median abundance, but below the median frequency were occasional; 4) Species that recorded values below the median of both abundance and frequency were categorized as rare.

For Canonical Correspondence Analysis (CCA) we used the CANOCO 4.5 program (Ter-Braak, 1986). To normalize the data and ensure homoscedasticity, environmental variables (except pH) and phytoplankton abundances were transformed using the $\log(x+1)$ function. Forward selection, coupled with a Monte Carlo permutation test, was employed

to assess the statistical significance of the relationships between environmental variables and species abundance.

To analyze the water quality of the dams from phytoplankton, different water quality indices were applied: *i*) The “association quotient” (CA) based on the criteria of Thunmarck (1945), Nygaard (1947) and Gayral (1954) which is calculated with the following formula $CA=Cy+Ch+Ce+Eu/De$, where the number of species is represented by Cy=Cyanophyceae, Ch=Chlorophyceae (Chlorococcales), Ce=Central diatoms, Eu=Euglenophyceae and De=Chlorophyceae (Desmidiales), where the CA is interpreted as <1=oligotrophic, 1.1 to 2.5=mesotrophic, 2.6 to 2.9=eutrophic and >3.0 saprotrophic (Ortega et al., 1994). *ii*) The organic pollution index (IP) of Palmer (1969), which is based on the reference of 20 phytoplankton genera that have been considered in 165 publications as tolerant to organic pollution in continental water bodies. The classification considers genera with a value of one when it is shallow organic contamination. At the same time, two indicates low organic contamination, three indicates intermediate conditions, four indicates moderate contamination, and five indicates high organic contamination. Based on the above, the following criterion was used: IP values ≥ 20 indicate environments with high organic contamination, IP values between 15 and 19 probable organic contamination, and IP < 15 indicates low organic contamination. Finally, *iii*) Diatom Index (ID=Central diatoms/Pennal diatoms), which is based on the richness of Central and Pennal diatoms, where values above 0.2 are considered characteristic of eutrophic waters (Nguyen, 2003).

Results

Environmental Variables

Table 1 shows the values of the six physical and chemical variables examined at each station in both dams during September and October. Both reservoirs are well-oxygenated environments between 4.4 and 9.6 mg/l, poorly mineralized with 20-40 mg/l $CaCO_3$, with a general pH of 7.0 to 8.0, temperature between 15 and 22°C, and conductivity of 62 and 171 $\mu S/cm$.

Table 1. Values of the Physical and Chemical Variables in each Sampling Station of the El Llano (L) and Taxhimay (T) Dams, during September and October 2022.

Limnological parameter	September/2022			October/2022		
	L1	L2	L3	L1	L2	L3
1. Temperature (°C)	15.4	17	17.2	16.5	15.8	21.2
2. pH	7	9.1	8.8	7	7	7
3. Dissolved Oxygen (mg/l)	6.9	6.5	6.6	4.4	6.8	5.6
4. % Oxygen Saturation	67.5	107	95	41	64	52
5. Alkalinity (mg/l CaCO ₃)	24	24	24	30	42	34
6. Conductivity (μS/cm)	62	68	67	70	70	70
	T1	T2	T3	T1	T2	T3
1. Temperature (°C)	21.2	21.8	20.5	19.9	19.3	19.2
2. pH	7.9	8	7.8	8	8	7
3. Dissolved Oxygen (mg/l)	5.8	6.1	5.3	7.7	8	9.6
4. % Oxygen Saturation	93.1	107	88.8	118	79.1	94.9
5. Alkalinity (mg/l CaCO ₃)	30	20	48	80	50	60
6. Conductivity (μS/cm)	171	146	146	141	147	140

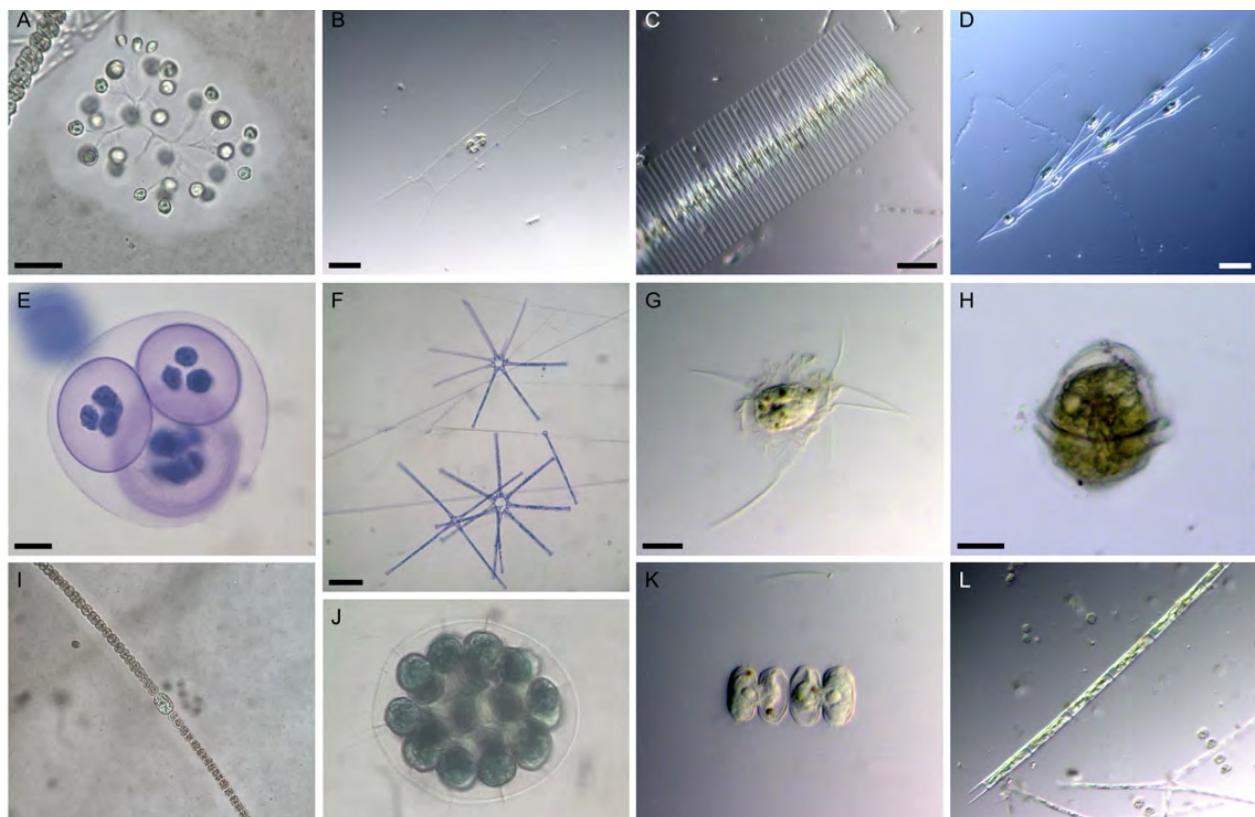
1, 2, 3 correspond to the sampling stations (station 1, station 2 and station 3).

Composition of Phytoplankton

Table 2 shows the specific richness for both dams, which totals 55 taxa, 45 for El Llano, and 36 for Taxhimay (Fig. 2), where 26 species were recorded in both dams.

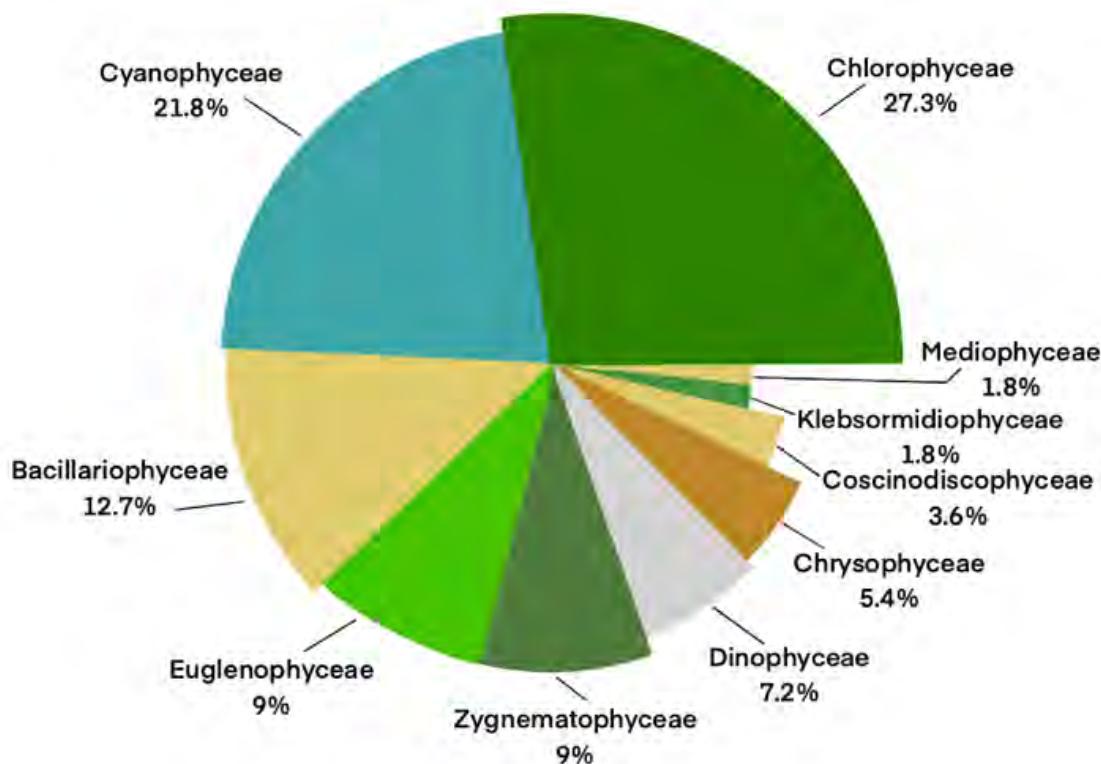
Table 2. Phytoplankton Determined in each of the Selected Stations: L1, L2, L3 (El Llano Dam) and T1, T2, T3 (Taxhimay Dam) for September and October 2022, Where "X" Indicates the Presence and "0" Absence of the Taxon. The Olmstead-Tukey O-T Value for El Llano (L) /Taxhimay (T); Where C=Constant, D=Dominant, O=Occasional, R=Rare; * Corresponds to New Records for the Mexico, and ** New Records for the State of Mexico

Taxa	O-T L/T	El Llano (L)			Taxhimay (T)								
		L1	L2	L3	L1	L2	L3	T1	T2	T3	T1	T2	T3
		September/2022		October/2022		September/2022		October/2022		September/2022		October/2022	
Phylum Cyanobacteria													
Clase Cyanophyceae													
<i>Dolichospermum plancticum</i> (Brunnthal) Wacklin, L. Hoffmann & Komárek 2009	C/D	X	0	0	X	X	0	0	0	X	X	X	X
** <i>Coelomorpha microcytoides</i> Komárek 1989	C/-	X	0	0	X	0	0	0	0	0	0	0	0
<i>Microcystis aeruginosa</i> (Kützing) Kützing 1846	-/D	0	0	0	0	0	0	X	0	X	X	X	X
<i>Microcystis botrys</i> Telling 1942	-/D	0	0	0	0	0	0	X	X	0	X	X	X
<i>Microcystis panniformis</i> Komárek, Komárkova-Legnerová, Sant'Anna, Azevedo & Senna 2002	-/D	0	0	0	0	0	0	X	X	X	X	X	X
<i>Oscillatoria</i> sp. Vaucher ex Gomont	-/R	0	0	0	0	0	0	X	X	X	X	X	X
<i>Planktothrix agardhii</i> (Gomont) Anagnostidis & Komárek 1988	-/D	0	0	0	0	0	0	X	0	0	0	0	0
<i>Pseudanabaena</i> sp. Lauterborn, 1915	R/O	X	0	0	0	0	0	X	0	X	0	0	0
* <i>Radiocystis fernandoi</i> Komárek & Komárkova-Legnerová 1993	R/R	X	0	0	0	0	0	X	0	0	0	0	0
<i>Sphaeroctavum</i> sp. Azevedo & Sant'Anna, 2003	R/O	X	0	0	0	0	0	0	X	0	X	0	0
<i>Synechocystis</i> sp. Sauvageau, 1892	R/R	X	0	0	0	0	0	X	0	X	0	0	0
<i>Woronichinia naegeliana</i> (Unger) Elenkin 1933	-/D	0	0	0	0	0	0	0	0	X	X	X	X


Continued on following page.

		<i>Phylum Chlorophyta</i> <i>Clase Chlorophyceae</i>							
* <i>Coenocystis</i> sp. Korshikov, 1953		C/R	0	0	X	X	0	0	0
<i>Crucigenia</i> sp. Morren, 1830		C/-	0	0	X	0	0	0	0
<i>Eudorina</i> sp. Ehrenberg 1832		D/-	0	X	X	X	0	0	0
<i>Haematococcus lacustris</i> (Girod-Chantrans) Rostafinski 1875		D/R	X	0	0	X	0	0	0
<i>Hariotina reticulata</i> P.A. Dangeard 1889		D/-	X	X	0	X	0	0	0
<i>Monactinus simplex</i> (Meyen) Corda		-D	0	0	0	0	0	0	0
<i>Mucidospphaerium pulchellum</i> (H.C. Wood) C. Bock, Proschold & Krienitz 2011		D/D	X	X	X	X	0	X	X
** <i>Neospongiaococcum</i> sp. Deason, 1971		R/-	0	0	0	X	0	0	0
<i>Nephrocystium</i> sp. Nägeli, 1849		D/-	X	0	X	0	0	0	0
<i>Oedogonium</i> sp. Link ex Hirn, 1900		C/-	0	0	X	0	0	0	0
<i>Ocystis</i> sp. Nägeli ex A. Braun, 1855		D/R	X	X	X	X	0	X	0
<i>Pandorina morum</i> (O.F. Müller) Bory 1826		D/-	X	0	X	0	0	0	0
* <i>Paulschulzia pseudovolvox</i> (P. Schulz) Skuja 1948		D/-	X	X	0	X	0	0	0
<i>Sphaerocystis schroeteri</i> Chodat 1897		D/-	X	X	0	X	0	0	0
* <i>Yamagishiella</i> sp. H. Nozaki, 1992		D/-	X	X	0	X	0	0	0
		<i>Phylum Charophyta</i> <i>Clase Zygnematophyceae</i>							
<i>Cosmarium</i> sp.1 <i>Corda</i> ex Ralfs, 1848		D/-	X	X	X	0	X	0	0
<i>Cosmarium</i> sp.2 <i>Corda</i> ex Ralfs, 1848		D/-	X	0	0	X	0	0	0
<i>Mougeotia</i> sp. C. Agardh, 1824		D/-	X	X	X	X	0	0	0
<i>Staurastrum cingulum</i> (West & G.S. West) G.M. Smith 1922		D/R	X	X	X	X	0	X	0
<i>Staurastrum</i> sp. Meyen ex Ralfs, 1848		R/R	0	0	X	0	0	0	X
		<i>Phylum Charophyta</i> <i>Clase Klebsormidiophyceae</i>							
<i>Elakatothrix</i> sp. Wille, 1898		R/-	0	X	0	0	0	0	0

Continued on following page.


Continued from previous page.

Phylum Euglenophyta	
Clase Euglenophyceae	
<i>Phacus</i> sp 1 Dujardin, 1841	D/-
<i>Phacus</i> sp 2 Dujardin, 1841	C/-
<i>Trachelomonas hispida</i> (Perty) F. Stein 1878	D/R
<i>Trachelomonas volvocina</i> (Ehrenberg) Ehrenberg 1834	D/O
<i>Trachelomonas rugulosa</i> var. <i>rugulosa</i> (F. Stein) G.A. Klebs	C/R
Phylum Dinoflagellata	
Clase Dinophyceae	
<i>Ceratium hirundinella</i> (O.F. Müller) Dujardin 1841	R/D
<i>Peridinium willei</i> Huitfeldt-Kaas 1900	D/D
<i>Peridinium</i> sp.	-R
* <i>Peridiniopsis</i> sp. Lemmermann, 1904	C/R
Phylum Heterokontophyta	
Clase Chrysophyceae	
<i>Dinobryon cylindricum</i> O.E. Imhof 1887	D/D
<i>Dinobryon</i> sp. 1 Ehrenberg, 1834	D/D
<i>Mallomonas</i> sp. Perty, 1852	D/D
Clase Mediophyceae	
* <i>Acanthoceras cf. zachariassii</i> (Brun) Simonsen 1979	-D
Clase Bacillariophyceae	
<i>Achnanthes</i> sp.	O/-
<i>Asterionella formosa</i> Hassall 1850	D/D
<i>Cymbella mexicana</i>	-R
<i>Fragilaria crotonensis</i> Kitton 1869	C/C
<i>Epithemia</i> sp. Kützing, 1844	C/-
<i>Frustulia</i> sp. Rabenhorst, 1853	C/R
<i>Navicula</i> sp. Bory, 1822	R/R
Clase Coscinodiscophyceae	
<i>Aulacoseira granulata</i> f. <i>curvata</i> Simonsen, 1979	C/D
<i>Aulacoseira granulata</i> var. <i>angustissima</i> (O. Müller) Simonsen 1979	R/D

Figure 2. A) *Mucidospaerium pulchellum*, B) *Acanthoceras* cf. *zachariassii*, C) *Fragilaria crotonensis*, D) *Dinobryon cylindricum*, E) *Paulschulzia pseudovolvox*, F) *Asterionella formosa*, G) *Mallomonas* sp. H) *Peridinium* sp. I) *Dolichospermum* sp. *plancticum*, J) *Pandorina morum*, K) *Cosmarium* sp., L) *Aulacoseira granulata* var. *angustissima*. Scale Bars E, G, J, K=10 μ m, A, B, D, H=20 μ m, C, L=25 μ m, F, I = 30 μ m.

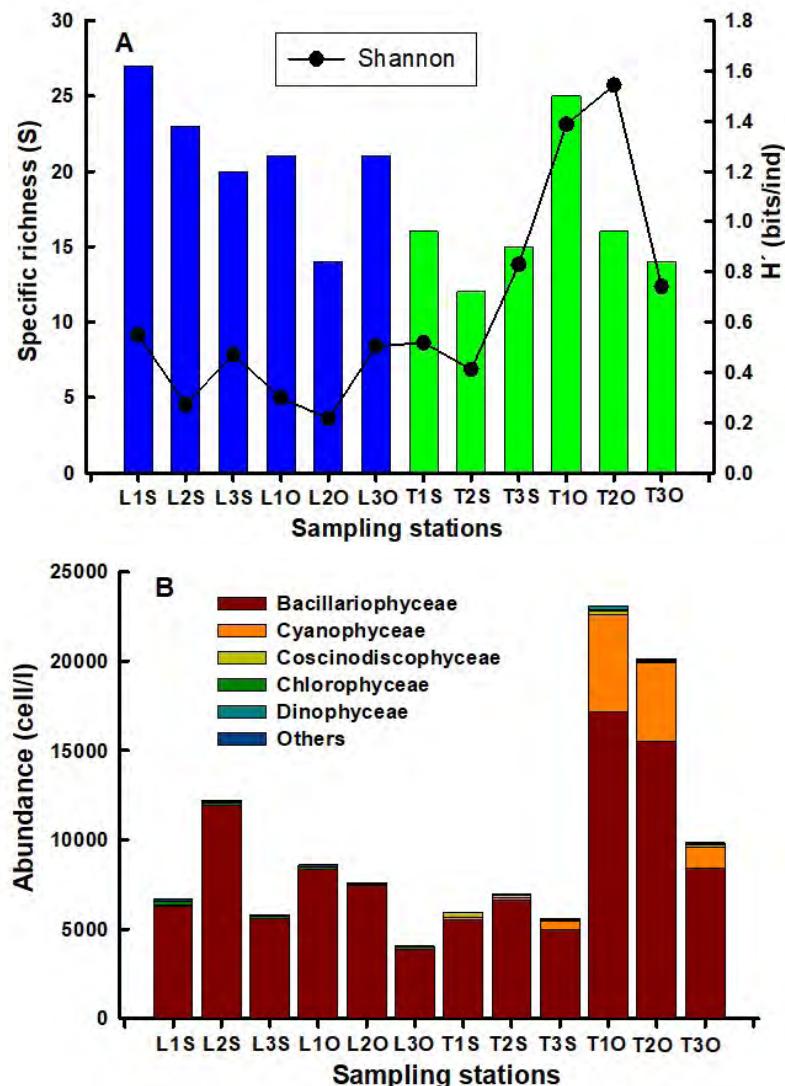
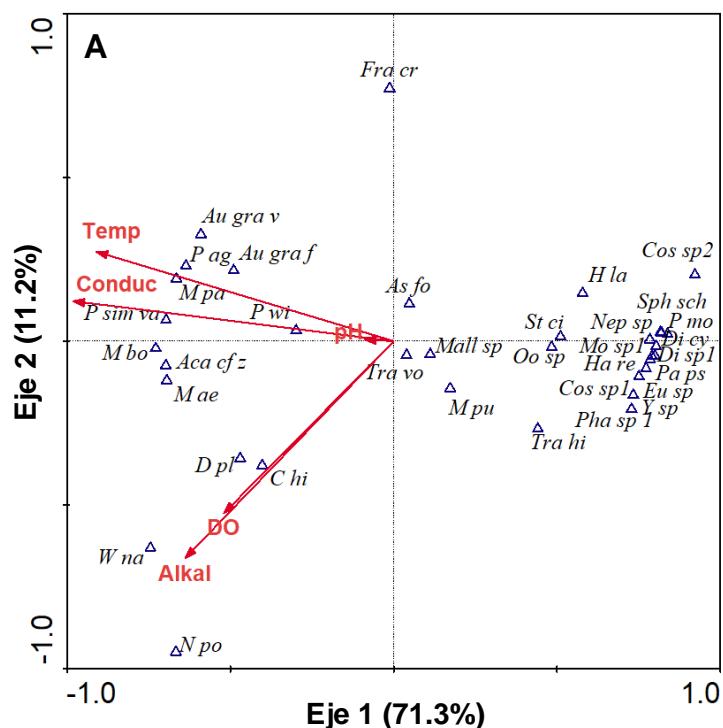

Taxonomic records for El Llano and Taxhimay dams (Fig. 3) indicate ten classes. The percentages concerning specific richness were the following: Chlorophyceae (27.3 %), Cyanophyceae (21.8 %), Bacillariophyceae (12.7 %), Euglenophyceae and Zygnematophyceae (9.0 %), respectively, Dinophyceae (7.2 %), Chrysophyceae (5.4 %), Coscinodiscophyceae (3.6 %), Mediophyceae, and Klebsormidiophyceae (1.8 %), each.

Figure 3. Percentage distribution by Taxonomic Classes of the Phycoflora Richness Recorded in the El Llano and Taxhimay Dams.

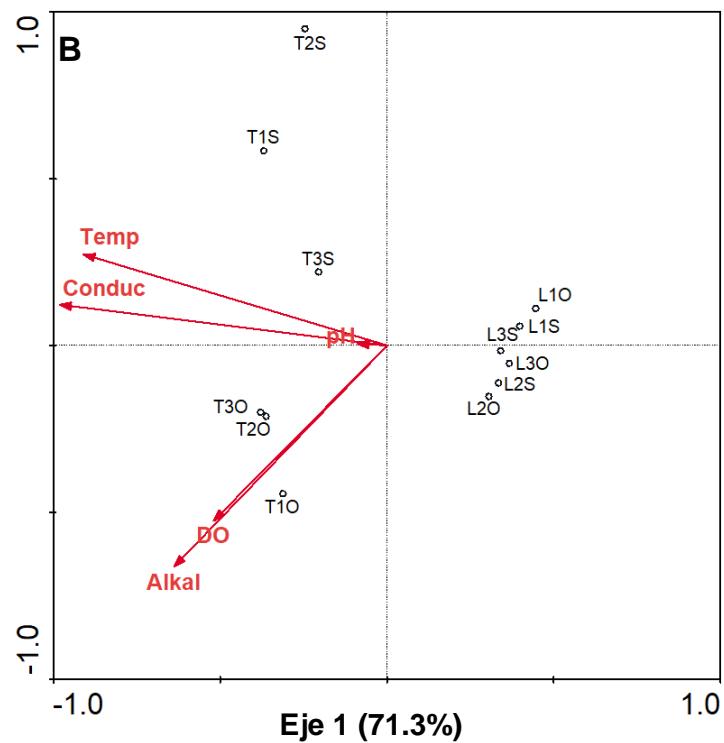
Based on the Olmstead-Tukey analysis, the following were recorded in El Llano: 22 dominant species, 12 constant, 10 rare, and 1 occasional. Of them, the most abundant was *Asterionella formosa*, with a percentage that ranged between 79.9 and 96.4. Meanwhile, *Aulacoseira granulata* f. *curvata*, and *Phacus* sp. 2 were constant. For its part, in Taxhimay, there were 17 dominant species, for example, *Asterionella formosa*, *Microcystis panniformis*, *Woronichinia naegeliana*, *Acanthoceras* cf. *zachariassii*, 14 rare, 3 occasional, and 1 constant.

In Fig. 4A, the specific richness (S) is indicated in each of the sites where it is observed that in El Llano, the record with the highest richness was 27 taxa (L1 in September), followed by 25 taxa (T1 in October). In contrast, those with the lowest richness were stations T2 in September and L2 in October, with 12 and 14 taxa, respectively. In general, the H' index was highest in the Taxhimay Dam, with 1.54 bits/ind. in T2 in October, and the lowest was in El Llano, with 0.21 bits/ind. in the L2 in October station.


Figure 4. A) Specific Richness and Shannon Index in each of the Study Stations, 4 B) Abundance of Taxonomic Classes Recorded in each of the Dams, where L, Represents El Llano and T, Taxhimay; 1, 2, 3 each of the Stations; Finally, S and O Indicates the Month of Sampling (September and October 2022).

Regarding abundance, the highest record was at station T1 in October, with 21,476 cell/ml. In contrast, the lowest abundance was at station L3 in the same month, with 4,056 cell/ml (Fig. 4B).

The abundance by taxonomic classes in all the sampling stations studied was markedly higher for Bacillariophyceae, represented by the biomass of *Asterionella formosa* with 79.9 to 96.4 % (96,856 cell/ml). Also, during October in Taxhimay, the proliferation of the Cyanophyceae: *Dolichospermum plancticum*, *Microcystis aeruginosa*, *M. botrys*, *M. panniformis*, and *Woronichinia naegeliana* were notable. Finally, the Chlorophyceae were represented


mainly by *Eudorina* sp., *Haematococcus lacustris*, *Mucidospaerium pulchellum*, and *Yamagishiella* sp.

The CCA explained 82.5 % of the variation in the data where conductivity was significant ($p<0.01$, $F=8.23$, $\lambda=0.54$) and was positively related to *Aulacoseira granulata* var. *angustissima*, *Monactinus simplex*, *Aulacoseira granulata* f. *curvata*, *Planktothrix agardhii*, *Peridinium willei*, and *Microcystis panniformis* from samples collected in September at the Taxhimay Dam. At the same time, this variable was negatively related to *Cosmarium* sp.1, *Dinobryon* sp., *Dynobrion cylindricum*, *Eudorina* sp., *Hariotina reticulata*, *Mallomonas* sp., *Mucidospaerium pulchellum*, *Nephrocitium* sp., *Oocystis* sp., *Pandorina* sp., *Phacus* sp.1, *Trachelomonas hispida*, and *Yamagishiella* sp. associated with samples from El Llano (Fig. 5A and 5B). It is also observed that the species positively related to conductivity were positively related to temperature. For its part, *W. naegeliana*, *D. planctonicum* and *C. hirundinella* are related to alkalinity.

Continued on following page.

Continued from previous page.

Figure 5. Canonical Correspondence Analysis (CCA) showing A) the Relationship of the Limnological Variables with the Species and B) the Relationship of the Limnological Variables with the Samples Collected in the El Llano and Taxhimay during September and October 2022. *Aulacoseira granulata* f. *curvata* (Au gra f. cur), *Aulacoseira granulata* var. *angustissima* (Au gra var. ang), *Monactinus simplex* (P. sim. var. chl.), *Microcystis panniformis* (M. pan.), *Planktothrix agardhii* (P. ag), *Navicula* sp. (Na sp.), *Oscillatoria* sp. (Os. sp.), *Acanthoceras* cf. *zachariassii* (Aca cf. zach), *Peridinium willei* (P wi), *Microcystis aeruginosa* (M ae), *Microcystis botrys* (M bo), *Sphaerocavum* sp. (Sph sp), *Dolichospermum plancticum* (D. pl), *Woronichinia naegeliana* (W. na), *Ceratium hirundinella* (C hi) and *Cymbella mexicana* (C. mex).

Water Quality Indexes

The association quotient (CA) registered values of 6.75 for El Llano ($CA=6+14+2+5/4= 6.75$), in contrast to 10.5 in Taxhimay ($CA= 11+5+2+3/2 = 10.5$); which indicates that they are saprotrophic environments. Considering the genera registered in the reservoirs, the IP, based on the genus contamination index obtained values of 6 for El Llano due to the presence of *Navicula* 3, *Pandorina* 1, and *Phacus* 2, which adds up to a total IP of 6; while for Taxhimay, it presented *Oscillatoria* with a value of 5 and *Navicula* 3, which indicated a value of 8. Therefore, based on these biological indicators, during this time of months of high and low rainfall, they were systems with low organic contamination. While, regarding the ID, it was 0.33 ($2/6=0.33$) for El Llano and 0.50

for Taxhimay ($2/4=0.50$). Both reservoirs recorded values >0.2 , so the environmental condition of the systems indicates eutrophic conditions.

Discussion

Environmental Variables

El Llano and Taxhimay dams are reservoirs of temperate waters, with temperatures typically ranging between 15 and 22°C. Furthermore, mineralization levels remain low, usually between 30 and 80 mg/l CaCO₃. This is in contrast to levels observed five years ago in the study area, which ranged from 4 to 162 mg/l CaCO₃ (Razo-Paredes et al., 2016). This low mineralization has also been recorded for Lake Zirahuén, Michoacán (Bernal-Brooks, 1998).

The pH levels ranged from neutral to basic (7-9), which were slightly similar to the 6-8.1 range previously documented in the study area by Razo-Paredes et al. (2016). This trend was also observed in the records from Taxhimay during 2018-2019, with values ranging from 7.0 to 9.0 (Saavedra-Martínez, 2020).

Regarding dissolved oxygen, values were from 5.8 to 9.6 mg/l, which indicates that in October 2022, the water surface was well-oxygenated. This suggests an essential photosynthetic activity during the study period and the values of this variable have increased when compared to the records of July 2017, where the values were from 1.0 to 4.6 mg/l (Toledo-Trejo & Razo-Paredes, 2018) and those quantified in Taxhimay between August 2018 and July 2019 with average values between 6.0 to 6.2 mg/l (Saavedra-Martínez, 2020).

The conductivity in both dams, ranging between 62-140 µS/cm was recorded, indicating low conductivity values and confirming the records by Toledo-Trejo and Razo-Paredes (2018) and Saavedra-Martínez (2020). Concerning CCA, temperature and conductivity were positively related to diatoms: *A. granulata* var. *angustissima*, *A. granulata* f. *curvata*; green algae: *Monactinus simplex* and the cyanobacteria: *M. panniformis*. Alkalinity explains the secondary gradient of phytoplankton composition. Conditions that do not coincide with those analyzed for the phytoplankton of Chapala, Jalisco, where sulfate and alkalinity concentrations were the most important variables that determined the composition and richness of the lake's phytoplankton (Mora-Navarro et al., 2004).

The abundance of *Asterionella formosa*, *Aulacoseira granulata*, and *Microcystis aeruginosa* corresponds to species that grow better in eutrophic systems with high amounts of nutrients such as phosphates and nitrates. Information that has been quantified in Taxhimay is between 1.0 to 1.4 mg/l and 0.5 to 0.7 mg/l, respectively (Toledo-Trejo & Razo-Paredes, 2018). In addition, Chl a concentration was between 25.4 and 282.8 µg/l when there were blooms; therefore, the limnological and phycological conditions indicate that they correspond to eutrophic systems (Saavedra-Martínez, 2020).

In particular, the development of populations of three *Microcystis* species suggests the establishment of monitoring that includes different climatic periods and sampling sites to learn more about the ecological dynamics of phytoplankton in the reservoirs of Villa del Carbón, State of Mexico, to support the management of alternative drinking water supply systems.

On the other hand, samples obtained during the two studied months have different levels of precipitation, September with 150 mm and October with 69 mm; this correspond according to the stage of ecological succession for reservoirs in the central zone of Mexico indicated by Arredondo-Figueroa and Flores Nava (2012) to the dilution phase in both dams during September, since the precipitation was greater during this period and therefore the phytoplankton community showed greater stability. Meanwhile, the biological material from October, when precipitation decreased (69 mm), increased primary productivity with the abundance of Bacillariophyceae of 36,404 cell/ml and Cyanophyceae with 11,016 cell/ml, so they represent a transition phase, when it is assumed greater amount of nutrients in the water column.

Phycoflora

The specific richness of phytoplankton in both dams was 55 species; for El Llano, there were 45 taxa, while Taxhimay, 32 taxa, and 26 taxa were present in the two reservoirs. The most diverse groups in both were Chlorophyceae, with 27.3 %, Cyanophyceae 21.8 %, and Bacillariophyceae 12.7 %. For the El Llano, 41 taxa cited by Razo-Paredes et al. (2016) coincide; while, in Taxhimay Toledo-Trejo and Razo-Paredes (2018), indicated six taxa. Therefore, 26 species correspond to new records for this reservoir.

These environments contain only the 8.4 % phytoplankton diversity recorded from the State of Mexico (Garduño-Solórzano et al., 2009), where the taxa that develop in the two dams were: *D. plancticum* (Cyanophyceae); *H. lacustris*, *M. pulchellum*, *Oocystis* sp., *S. cingulum* (Chlorophyceae), *A. formosa* (Bacillariophyceae), *A. granulata* f. *curvata*, and *A. granulata* var. *angustissima* (Coscinodiscophyceae); *Trachelomonas hispida*, *T. volvocina*, and *T. rugulosa* (Euglenophyceae); *C. hirundinella*, *P. willeii*, *Peridiniopsis* sp. (Dinophyceae), and *Mallomonas* sp. (Crysophyceae).

The following six taxa: *A. cf. zachariassii*, *Coenocystis* sp., *P. pseudovolvox*, *Peridiniopsis* sp., *R. fernandoi*, and *Yamagishiella* sp., correspond to new records from México, based in Novelo and Tavera (2023). Also, *Coelomoron microcystoides* and *Neospongiovaccum* sp. were new records for the State of Mexico.

In El Llano, the following diatoms were dominant: *Asterionella formosa* and *Aulocoseira granulata* f. *curvata*, which coincides with what was described by Toledo-Trejo and Razo-Paredes (2018), who indicated that *A. formosa* was also dominant in phytoplankton in the study area. Likewise, the dominant species in both dams was *A. formosa*, with

abundances of 43 and 53×10^3 cell/ml for El Llano and Taxhimay, respectively; according to Bellinger and Sigee (2010), values that indicate eutrophic lentic water bodies.

Taxhimay Dam, the development of *A. granulata* var. *angustissima* was dominant during October 2022; conditions that are explained by corresponding to a taxon whose ecological distribution in lentic environments of 13 lakes in central Mexico has been recorded under limnological conditions of average annual temperature of 16.6°C, pH 7.7 and trophic state from meso to hypertrophic (Ramírez-Nava et al., 2022). As well as in eutrophic reservoirs in Brazil (Bicudo et al., 2016). Therefore, this is a bioindicator of eutrophic environments, which allows us to add arguments to indicate the Taxhimay dam under ecological conditions of neutral to slightly basic, with pH between 7-8 and temperature 19.2 to 19.9°C where they grow in high percentages of the taxon, as has been observed in Lake Santa Gertrudis, Jalisco and San Juanico, State of Mexico, with abundances more significant than 31 % (Ramírez-Nava et al., 2022).

Water Quality Indexes

The phycoflora of El Llano is distributed in six species of Cyanophyceae, in contrast to 11 species in Taxhimay. At the same time, the Chlorophyceae in El Llano were 14 versus five species in Taxhimay. A composition that allowed different water quality indexes to be considered: CA, IP, and ID, all with results that indicate that they are eutrophic systems. Besides, El Llano has a lower level of eutrophication than Taxhimay. In the latter, the dominant species were *A. formosa* and *M. aeruginosa*; their presence suggests a significant amount of wastewater and, therefore, a high concentration of nutrient. The presence of the same species has been recorded in the following seven dams: Zimapán (Gutiérrez-Hernández, 2003), Mintzita (Ortega-Murillo et al., 2007), La Laguna, Los Reyes, Necaxa (González-Fernández et al., 2013), El Abrevadero (Carrasco-Vargas et al., 2014), and Taxhimay (Toledo-Trejo and Razo-Paredes, 2018).

Conclusions

The environmental conditions were in both reservoirs poorly mineralized (30-80 mg/l CaCO_3), low conductivity (62-140 $\mu\text{S}/\text{cm}$), and well oxygenated; during the study of the phytoplankton structure of two months, where there were marked differences of precipitation records from September (150 mm) and October (69 mm).

Considering both dams, a specific richness of 55 species was obtained, of which the percentages concerning the specific richness were from the highest to lowest of Chlorophyceae (27.3 %), Cyanophyceae (21.8 %), and Bacillariophyceae (12.7 %), among other classes of lower record; new records were determined for the study area in Mexico. Also, the H' index was higher in the Taxhimay Dam with 1.54 than in El Llano with 0.21 bits/ind.

The Olmstead-Tukey analysis showed 22 dominant species for El Llano and 17 for Taxhimay. In particular, the abundance in both dams was represented by the Class Bacillaryophyceae, of which *Asterionella formosa* was the most dominant species. In Taxhimay, it also indicated an abundance of the Cyanophyceae (*Microcystis aeruginosa*, *M. botrys*, *M. panniformis*, and *Woronichinia naegeliana*); taxa associated with eutrophic water body conditions. The CCA showed positive relations with the conductivity and warm temperature (15 and 22°C), and alkalinity with some species.

Based on the three water quality indexes used, the two dams indicate that they are eutrophic, in addition, the abundance of Cyanophyceae from Taxhimay in October suggests that they should be monitored in different climatic periods, since they can develop harmful proliferations.

Acknowledgements

The UNAM-FES Iztacala for financial support the field work (Laboratorio de Investigación Científica III and Grupo de Investigación de Limnología Tropical (GILT), UIICSE. Daniel Sánchez Avila for creating the maps of the study area.

Authors' Contributions

GGS formal analysis and investigation, data curation, writing—original draft preparation and review and editing. GFJM conceptualization, collected the samples, identification, statistical analysis and writing. BVV collected the samples, identification, writing. DLVK collected the samples, identification, writing. CAER conceptualization, collected the samples, original draft preparation, and review and editing. All authors have read and agreed to the published version of the manuscript.

References

American Public Health Association/American Water Works Association/Water Environment Federation (APHA, AWWA, WEF). (2005). *Standard methods for the examination of water and wastewater*. (21st. ed.).

Arredondo-Figueroa, J. L., & Flores-Nava, A. (1992). Características limnológicas de pequeños embalses epicontinentales, su uso y manejo en la acuacultura. *Hidrobiológica*, 3(4), 1-10. <https://www.redalyc.org/pdf/578/57820201.pdf>

Bellinger, E., & Sigee, D. (2010). *Freshwater algae: Identification and use as bioindicators*. Wiley-Blackwell. <https://doi.org/10.1002/9780470689554>

Bernal-Brooks, F. W. (1998). The lakes of Michoacán (Mexico): a brief history and alternative point of view. *Freshwater Forum*, 10, 20–34.

Bicudo, C. E., & Menezes, M. (2017). *Generos de algas de aguas continentais do Brasil: chave para identificacao e descricoes*. (3^a. ed). RiMa, São Carlos.

Bicudo, D., Tremarin, P., Almeida, P., Zorzal-Almeida, S., Wengrat, S., Faustino, S. Costa, L.F., Bartozek, C. R., Rocha, A. C. R., Bicudo, C. E. M., & Morales, E. A. (2016). Ecology and distribution of *Aulacoseira* species (Bacillariophyta) in tropical reservoirs from Brazil. *Diatom Research*, 31(3), 199–215. <https://doi.org/10.1080/0269249X.2016.1227376>

Bojorge-García, M., & Cantoral-Uriza, E. (2021). *Algas del estado de Querétaro: un recorrido ilustrado*. Prensas de Ciencias, UNAM.

Bourrelly, P. (1981). *Les Algues d'eau douce. Initiation à la Systématique. Tome II. Les Algues jaunes et brunes. Chrysophycées, Phéophycées, Xanthophycées et Diatomées*. Editions N. Boubée & Cie.

Carrasco-Vargas, U. Y., Díaz-Vargas, M., Molina-Astudillo, F. I., García-Rodríguez, J., & Elizalde-Arriaga, E. E. (2014). Composición fitoplanctónica de la presa El Abrevadero, Jantetelco, Morelos, México. *Acta Universitaria*, 24(6), 3-10. <https://doi.org/10.15174/au.2014.649>

Comas, A. (1996). *Las Chlorococcales dulciacuáticas de Cuba*. Berlin: J. Cramer.

Chandel, P., Mahajan, D., Thakur, K., Kumar, R., Kumar, S., Brar, B., Sharma, D., & Sharma, A. K. S. (2023). A review on plankton as a bioindicator: A promising tool for monitoring water quality. *World Water Policy*, 1-20. <https://doi.org/10.1002/wwp2.12137>

Comisión Nacional del Agua (Conagua). (2023). *Monitoreo de las principales presas de México*. <https://sinav30.Conagua.gob.mx:8080/Presas/>

De la Lanza-Espino, G., & García-Calderón, J. L. (2002). *Lagos y Presas de México*. (2da. ed.). AGT.

Dodds, W., Whiles, M. (2010). *Freshwater Ecology: Concepts and Environmental Applications of Limnology*. (2nd Ed). Elsevier. <https://doi.org/10.1016/B978-0-12-374724-2.00024-6>

Domínguez, S. J. (2019). La construcción de presas en México. *Gestión y Política Pública*, 28(1), 3-37. <https://doi.org/10.29265/gypy.v28i1.551>

Figueroa-Torres, M. G., Santos, Z. D., & Velasco, G. A. (2008). *Ficoflora de Xochimilco. Diatomeas y Clorofitas (parte 1)*. Universidad Autónoma Metropolitana.

Garduño-Solórzano, G., Oliva-Martínez, M. G., & Ortega, M. (2009). Algas. In Ceballos, G. (Ed.) *La diversidad biológica del Estado de México. Estudio de estado*. (pp. 153-162). Gobierno del Estado de México.

Ghangrekar, M. M., & Chatterjee, P. (2018). Water pollutants classification and its effects on environment. In Das, R. (Ed.) *Carbon Nanotubes for Clean Water. Carbon Nanostructures* (pp. 11-26). Springer. <https://doi.org/10.1007/978-3-319-95603-9>

González-Fernández, J. M., Licea, S., Figueroa-Torres, M. G., & Soto-Cadena, J. (2013). Estudio preliminar del fitoplancton y su relación con algunos parámetros físico-químicos en tres embalses del estado de Puebla, México. In Garduño-Solórzano, G., Ángeles-López, O., Cruz-Monsalvo, A. (Eds.), *Memorias del VII Congreso Nacional de Ficología*. (pp. 173-174). UNAM. FES Iztacala.

González-Fernández, J. M., Luna-Soria, R., López-Hernández, M., Ramos-Espinosa, M.G., & Córdova-Tapia, F. (2023). Fitoplancton de la presa Zimapán, Hidalgo. In Ubisha Hernández, O., Avendaño Ibarra, A. R., Espinosa Rodríguez, C. A., Álvarez Ramírez, I., Valdez Moreno, M. E., Hernández Morales, R., & Inda Díaz, E. A. (Eds.) *Memorias de la XXIII Reunión Nacional de la Sociedad Mexicana de Planctología A.C. y XVI International Meeting of the Mexican Society of Planktology A.C.* (pp. 383-384). Universidad Autónoma del Estado de Quintana Roo, Cozumel.

Guiry, M. D., & Guiry, G. M. (2023) *AlgaeBase*. - World-wide electronic publication, National University of Ireland, Galway. <http://www.algaebase.org>

John, D. M., & Tsarenko, P. M. (2002). Order Chlorococcales. In John, D. M., Whitton, B. A., Brook, A. J. (Eds.) *The Freshwater Algal Flora of the British Isles. An identification guide to freshwater and terrestrial algae*. (pp. 327-409). Cambridge University Press.

Komárek, J., & Anagnostidis, K. (2002). *Cyanoprokariota 2. Teil: Chroococcales*. Band 19/2. Spektrum Akademischer Verlag.

Magurran, A. E. (2004). *Measuring biological diversity*. Blackwell Publishing.

Martínez-Jerónimo, F., Antuna-González, P. C., Hernández-Zamora, M., Martínez-Jerónimo, L., Muñoz, G., Simon, D. F., & Sauvé, S. (2022). Year-long monitoring of phytoplankton community, toxicogenic Cianobacteria, and total microcystins in a eutrophic tropical dam supplying the Mexico megacity. *Frontiers in Environmental Science*, 10, 3389. <https://doi.org/10.3389/fenvs.2022.984365>

Mora Navarro, M. R., Vázquez-García, J. A., & Vargas-Rodríguez, Y. L. (2004). Ordenación de comunidades de fitoplancton en el lago de Chapala, Jalisco-Michoacán, México. *Hidrobiológica*, 14(2), 91-103. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-88972004000200002

Moreno-Díaz, M. (2014). *Diagnóstico ambiental del parque ecoturístico Presa El Llano, Villa del Carbón, Estado de México*. (Bachelor's thesis). FES Iztacala, UNAM.

Nguyen, V. T. (2003). *Biodiversity of algae in the inland water bodies of Vietnam – prospects and challenges*. Agricultural Publishing House.

Novelo, E., & Tavera, R. (2023). *bdLACET Base de datos de algas continentales*. Facultad de Ciencias, UNAM. México. <https://bdlacet.mx>

Ortega-Murillo, M. R., Alvarado-Villanueva, R., Martínez-Sánchez, I., Arredondo-Ojeda, M., & Sánchez-Heredia, J. D. (2007). Estado trófico de la presa la Mintzita, Morelia, Michoacán, con base en la abundancia y distribución del fitoplancton. *Biológicas*, 9(1), 105-114. <https://www.biologicas.umich.mx/index.php?journal=biologicas&page=article&op=view&path%5B%5D=27>

Ortega, M. M., Godínez, J. L., Garduño-Solórzano, G., & Oliva, M. M. G. (1994). *Ficología de México. Algas Continentales*. AGT.

Palmer, C. M. (1969). A composite rating of algae tolerating organic pollution. *Journal of Phycology*, 5(1), 78-82. <https://doi.org/10.1111/j.1529-8817.1969.tb02581.x>

Ponce-Márquez, M. E., Ramírez-Rodríguez, R., & Ramírez-Vázquez, M. (2019). *Algas de la Cantera Oriente, Reserva Ecológica del Pedregal de San Ángel: guía de campo y laboratorio*. Las Prensas de Ciencias.

Ramírez-Nava, M., Caballero, M., & Avendaño, D. (2022). Variabilidad morfológica y distribución ecológica de especies del género *Aulacoseira* (Bacillariophyceae) en cuerpos de agua del centro de México. *Revista Mexicana de Biodiversidad*, 93(2002), e934197. <https://doi.org/10.22201/ib.20078706e.2022.93.4197>

Razo-Paredes, J. T., Toledo-Trejo, E., & Franco-Gómez, A. (2016). Caracterización fisicoquímica y microbiológica de la presa del Llano ubicada en el municipio de Villa del Carbón, Estado de México. *Revista de Energía Química y Física*, 3(6), 7-14. [/https://www.ecorfan.org/bolivia/](https://www.ecorfan.org/bolivia/)

researchjournals/Energia_Quimica_y_Fisica/vol3num6/Revista_Energia_Quimica_Fisica_V3_N6_2.pdf

Saavedra-Martínez, I. M. (2020). *Cambios en la estructura poblacional del acocil introducido Procambarus clarkii (Decapoda: Cambaridae) en el embalse Taxhimay, Estado de México.* (Bachelor's thesis). FES Iztacala, UNAM.

Semina, H. J. (1978). Estimating cell numbers. Using the standard microscope. In A. Sournia (Ed.), *Phytoplankton manual* (pp. 181-184).UNESCO.

Sokal, R. R., & Rohlf, F. J. (1981). *Biometry. The principles and practices of statistics in biological Research.* (2nd. ed). Freemand and Company.

Ter-Braak, C. J. F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariategradientanalysis. *Ecology*, 67(5), 1167-1179. <https://doi.org/10.2307/1938672>

Toledo-Trejo, E., & Razo-Paredes, J. T. (2018). Caracterización fisicoquímica y microbiológica de la presa San Luis Taxhimay, Municipio de Villa del Carbón en el Estado de México. *Revista de Innovación Sistemática*, 2(6), 23-28. https://www.ecorfan.org/taiwan/research_journals/Innovacion_Sistematica/vol2num6/Revista_de_Innovacion_Sistem%C3%A1tica_V2_N6_4.pdf

Valeriano-Riveros, M. E., Vilaclara, G., Castillo-Sandova, F. S., & Merino-Ibarra, M. (2014). Phytoplankton composition changes during water level fluctuations in a high-altitude, tropical reservoir, *Inland Waters*, 4(3), 337-348. <https://doi.org/10.5268/IW-4.3.598>

Wehr, J. D., Sheath, R. G., & Kociolek, J. P. (2015). *Freshwater algae of North America: ecology and classification.* (2nd. ed.). San Diego Academic Press.

World Wide Fund (WWF) (2022). *Living Planet Report 2022 – Building a nature- positive society.* In Almond, R. E. A., Grooten, M., Juffe Bignoli, D., & Petersen, T. (Eds). WWF. Gland.

Topics of Limnological Research in Mexico, coordinated by Alfredo Pérez Morales, was published in Dirección General de Publicaciones of the Universidad de Colima, avenida Universidad 333, Colima, Colima, México, www.ucol.mx. The edition was completed in December 2025. The Arial family was used for typesetting. Non Periodical Editorial Program: Eréndira Cortés Ventura. Cover Design: Adriana Minerva Vázquez Chávez. English Proofreader: Yul Ceballos. Interior Design: José Luis Ramírez Moreno and Leticia Bermúdez Aceves.

This book takes a significant step in showcasing the relevance of limnology to our survival. Freshwater habitats, though they cover less than 1 % of the Earth's surface, are home to a substantial portion of the world's biodiversity—at least 10 % of all known species. Freshwater habitats and the biodiversity they support are under threat. Moreover, our survival depends on access to high-quality freshwater. This book not only highlights the beauty of limnology and the scientific methods used to study it, but it also draws attention to the major causes of biodiversity loss in freshwater ecosystems. It shows all readers what it means to deal with inland waters as a scientist interested in understanding ecosystems and protecting them.

ISBN: 978-968-9733-13-3

9 789689 733133

UNIVERSIDAD DE COLIMA